其他
基于视觉感知的多传感器融合点云语义分割方法
1. Introduction
2. Motivation
3. Method
3.1. Overview
3.2. 模块一:Perspective projection
3.3. 模块二:Two stream network with residual-based fusion modules
3.4. 模块三:Perception-aware loss
4. Experiments
4.1. Results on SemanticKITTI
4.2. Results on nuScenes
4.3. Results on SensatUrban
4.4. Adversarial Analysis
4.5. Effect of perception-aware loss
5. Conclusion
参考文献
[1] Chen, Liang-Chieh, et al. "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs." IEEE transactions on pattern analysis and machine intelligence 40.4 (2017): 834-848.[2] Milioto, Andres, et al. "Rangenet++: Fast and accurate lidar semantic segmentation." 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2019.[3] El Madawi, Khaled, et al. "Rgb and lidar fusion based 3d semantic segmentation for autonomous driving." 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019.[4] Vora, Sourabh, et al. "Pointpainting: Sequential fusion for 3d object detection." Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2020.[5] Cortinhal, Tiago, George Tzelepis, and Eren Erdal Aksoy. "SalsaNext: Fast, uncertainty-aware semantic segmentation of LiDAR point clouds." International Symposium on Visual Computing. Springer, Cham, 2020.[6] Zhu, Xinge, et al. "Cylindrical and asymmetrical 3d convolution networks for lidar segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.