数据资产入表六步法!
数据可作为另一部门的业务的支撑或辅助,为企业开创新的盈利增长点;如:银行的存储业务和理财业务
数据资产纳入资产负债表
01
所谓数据资产入表,即数据资产入资产负债表,是指将数据确认为企业资产负债表中“资产”一项,在财务报表中体现其真实价值与业务贡献。
2021年3月发布的《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》之“营造良好数字生态”章节,明确提出发展数据资产评估、登记结算、交易撮合、争议仲裁等市场运营体系。去年12月19日发布的“数据二十条”(《中共中央 国务院关于构建数据基础制度 更好发挥数据要素作用的意见》),更明确提出“探索数据资产入表新模式”。
此次财政部印发《暂行规定》明确企业在编制资产负债表时,应当根据重要性原则并结合本企业的实际情况,在“存货”项目下增设“其中:数据资源”项目,反映资产负债表日确认为存货的数据资源的期末账面价值;在“无形资产”项目下增设“其中:数据资源”项目,反映资产负债表日确认为无形资产的数据资源的期末账面价值;在“开发支出”项目下增设“其中:数据资源”项目,反映资产负债表日正在进行数据资源研究开发项目满足资本化条件的支出金额。这意味着数据入表的政策时间表落地,开启我国数据资源资产化、资本化的进程。
02
在全球数字化转型的大趋势下,数据交易市场有望推动数据要素价值的开放共享和流通。
据信通院测算,2021年全球47个重要经济体的数字经济增加值规模高达 38.1 万亿美元,我国2021年数字经济规模也已达到7.1万亿美元。数据之于数字经济的价值不言而喻。
与此同时,数据重要性提升,2019年10月,党的十九届四中全会首次将数据纳入生产要素范畴,与土地、劳动、资本、技术等传统生产要素并列。2020年4月中共中央、国务院发布的《关于构建更加完善的要素市场化配置体制机制的意见》中正式将数据作为生产要素单独列出,提出要加速培育数据要素市场。数据正式成为社会经济生产活动所需要的基本资源之一。
03
根据我国国情,我国需要从土地财政转向数据财政。其主要原因有以下四点:
土地资源的有限性:土地是固定的生产要素,其供给量有限。随着城市化进程的加快,土地资源日益紧张,土地财政模式的可持续性受到质疑。同时,过度依赖土地财政可能导致土地资源的过度开发和浪费。
数据经济的崛起:在信息技术飞速发展的背景下,数据已成为新的生产要素和经济增长点。数据财政可以更好地支持和服务于数据经济的发展,推动数字经济创新和转型。
促进经济结构优化:数据财政可以促进经济结构优化升级。数据资产的运用可以推动产业结构调整,引导资金、人才等资源向高附加值、高技术产业转移,有助于提高国民经济整体竞争力。
满足社会发展需求:数据财政有利于满足社会发展需求。通过数据资产的流通、管理和应用,政府可以更好地了解社会需求,优化公共资源配置,提高公共服务质量和效率。
总之,从土地财政转向数据财政是适应新时代经济发展的需要,有助于实现经济可持续发展,提高政府治理能力,满足社会发展需求。
04
数据流通的道路是困难曲折的,根据全国信标委大数据标准工作组所制定的数据要素流通框架,数据要素流通主要涉及到:
1)政策和法律法规;
2)流通制度;
3)流通模式;
4)流通技术;
5)流通标准。
以上构成了数据要素流通总体框架。
政策和法规作为数据要素流通的基础,为数据产品交易的规范化和权属关系提供了指引,进而演化出有实践意义的数据流通要素制度,包括数据权属制度、数据评估制度、数据流通制度和数据监管制度。在确立政策法规和制度后,市场化运营逐步形成了数据要素流通模式,包括数据登记模式、数据定价模式、 数据交易共享模式和数据服务运营模式。
另外,数据要素流通技术则作为构成上述模式的筋骨,其背后所搭载的区块链和隐私计算等技术,实现数据价值流通突破所属权的限制,达到“数据可用不可见”,是近年来数据交易领域发展过程中的重要驱动引擎。在制度、模式和技术齐备后,数据要素流通标准将整个数据要素流通框架串联在一起,从而形成规范化运营和价值流动的闭环。
数据流通面临的挑战主要包括以下三个方面:
数据本身的安全:随着数据量的快速增长,如何确保数据在传输、存储和使用过程中的安全性成为一大挑战。数据泄露、篡改和丢失等安全问题日益凸显,需要采取有效的加密、脱敏和备份等技术手段来保护数据本身的安全。
数据流通活动的合规性:数据流通涉及多个主体和环节,如何确保数据流通活动的合规性是一个重要挑战。包括数据采集、处理、分析和使用的合规性,以及跨行业、跨部门、跨境的数据流通的合规性。
数据流通设施的安全:随着数据流通设施的日益重要,如何确保数据流通设施的安全成为另一个挑战。这包括硬件设备的安全、软件系统的安全以及网络安全等方面。
05
应对这些挑战,可以采取以下一些措施:
1. 完善数据安全法律法规:建立健全数据安全法律法规体系,明确数据安全保护的基本要求和规范,加强数据流通的监管。
2. 提高数据安全技术水平:不断研发和应用新的数据安全技术,提高数据加密、脱敏、备份等技术手段,确保数据本身的安全。
3. 建设数据安全防护体系:建立完善的数据安全防护体系,包括数据安全策略、安全技术、安全管理等方面,形成全方位、多层次的数据安全防护网。
4. 强化数据安全培训与教育:加强对数据安全知识的培训与教育,提高数据流通参与者的安全意识,降低数据安全事件的发生。
5. 加强国际合作与交流:面对跨境数据流通的挑战,加强国际合作与交流,推动制定国际数据安全标准与规范,共同维护全球数据安全。
总结:第一部分讲到了土地财政趋向饱和,数据成为财政收入新引擎。详说了原因、所遇到的困难挑战以及应对之策。
06
数据资产入表是指将企业的数据资源在财务报表中予以体现,以反映企业在数据要素方面的投入和收益。为了实现数据资产入表,企业需要满足一定的条件,并按照一定的路径进行操作。
我们致力于国有数据资产增值运营,在近二十年的数据探索经验中,我们总结出了数据资产【六步入表】法:
确认数据资产:企业需要梳理并确认自身的数据资源,明确哪些数据具备成为资产的条件。这包括企业内部生成的数据以及从外部获取的数据。
满足资产定义:为了将数据资源纳入财务报表,企业需要证明自己拥有或控制这些数据,并预期在未来一定时期内从中获得经济利益。这可能需要通过合同、授权等方式来证明对数据的控制权和使用权。
确定数据资产的计量方法:企业需要根据数据的特性以及其为企业带来的经济利益,确定适当的计量方法。这可能包括原始成本法、折旧法、公允价值法等。
制定会计政策:企业需要制定相应的会计政策,以规范数据资产的会计处理方法。这包括数据资产的初始确认、后续计量、减值测试以及终止确认等方面的规定。
编制财务报表:根据会计政策和相关准则,企业需要将数据资产纳入财务报表,并与其他资产、负债和权益项目进行恰当的分类和计量。这可能涉及资产负债表、利润表和现金流量表等财务报表的编制。
披露相关信息:企业需要在财务报表中披露与数据资产相关的信息,包括数据资产的类别、数量、价值、来源以及对企业经营业绩的影响等。这将有助于提高财务报表的透明度和可比性。
总之,数据资产入表是一个复杂的过程,需要企业充分了解自身数据资源,满足资产定义,并按照会计准则和政策进行恰当的会计处理。这将有助于提升企业财务报表的质量和透明度,为企业融资和投资者决策提供更有力的支持。
我们希望通过构建大数据资产流通交易服务平台,推动我国大数据产业的发展,实现数据价值的最大化。在上述描述的数据资产入表路径中,我们可帮助企业进行数据治理,从而将企业的数据资源转化为数据产品,为数据资产入表做准备。另外,我们有多年的数据价值发现及数据价值提升的经验,对于企业数据资产评估时合理评估资产价值提供依据。
07
从上图可以看出,数据资产入表对数据要素产业链上各个角色都提出更高要求。企业应当按照企业会计准则相关规定,根据数据资源的持有目的、形成方式、业务模式,以及与数据资源有关的经济利益的预期消耗方式等,对数据资源相关交易和事项进行会计确认、计量和报告。因此数据产业链上的角色者应当尽快尽快跨进数据资产入表的门槛。
08
明确数据产权:数据入表有助于明确数据产权,使数据资源持有权、数据加工使用权、数据产品经营权三权分置,有利于各参与方按照约定的规则进行数据交易和合作。
促进数据流通和交易:数据入表有助于建立场内外结合的数据要素流通和交易制度,进一步促进数据资源的流动和交换,为产业链上的企业提供更多的商业机会。
合理分配收益:数据入表有助于遵循“谁投入、谁贡献、谁受益”的原则,实现数据要素的贡献值分配,使各参与方能够按照其对数据的投入和贡献获得相应的收益,激发产业链上的各方的积极性。
加强数据安全治理:数据入表有助于加强数据安全治理,通过建立完善的数据安全管理制度,确保数据在产业链内的安全流通和应用,防止数据泄露、滥用等风险。
有利于企业估值和融资:数据资产入表有助于企业对数据资源进行合理估值,从而提高企业在资本市场的吸引力,为企业融资提供更多的可能性。
推动数字经济的发展:数据资产入表有助于推动数字经济的发展,使企业能够更好地利用数据资源进行创新和转型,提高生产效率,实现经济高质量发展。
综上所述,数据要素产业链上的不同角色进行数据入表有助于明确数据产权、促进数据流通和交易、合理分配收益、加强数据安全治理、有利于企业估值和融资以及推动数字经济的发展。
在未来,数据将成为企业发展和竞争的关键因素,而数据资产入表则是企业将数据资源转化为商业价值的重要步骤。通过数据资产入表,企业能够更好地管理和使用数据资源,提高生产效率,开拓新的商业机会,增强企业竞争力。同时,数据资产入表也将推动整个数据要素产业链的发展,实现数据价值的最大化,为社会和经济发展带来更大的贡献。希望通过本文的分享,能够为相关企业提供一些启示和帮助,共同推动数据要素市场的繁荣和发展,促进数字经济的健康发展。
总结:第二部分主要讲企业里被忽略蒙灰的数据该如何变身为数据资产。分享数据资产入表路径及分析各个产业链上的不同角色为何要进行数据资产入表。
来源:综合数据宝、数字菁英网等资讯整理
数据资产实操指南下载
扫描下方二维码,领取天津市数据资源服务联合体发布的《企业数据资产入表操作指引》和上海数据交易所发布的《数据资产入表及估值实践与操作指南》、浙江省发布的《数据资产确认工作指南》、中国银行业协会发布的《银行业数据资产估值指南》、深圳数据交易所发布的《数据资源入表白皮书》
1、《企业数据资产入表操作指引》梳理汇总了数据资产入表的政策依据及需求;基本原则;数据资产评估;合规与确权;成本的归集与分摊;列报和披露等方面的内容 。
2、《数据资产入表及估值实践与操作指南》针对企业入表十大操作难点、三种收益测算、八项创新应用给出操作指引。
3、《数据资产确认工作指南》为企事业单位数据资源确认为资产工作提供准则和通用性指南,是数据基础制度中财政相关的配套业务标准,可为探索公共数据授权运营管理中维护数据资源资产权益提供标准技术支撑。
4、《银行业数据资产估值指南》该标准构建了全面而实用的数据资产估值框架,涵盖数据资产的识别、评估、管理到价值提升等关键环节,为全面构建我国金融领域数据资产估值体系提供了有益借鉴,有助于完善数据要素资源体系,推动数据要素市场科学有序发展和数据资产估值走向规范化、市场化,助力行业数字化转型。
5、《数据资源入表白皮书》白皮书围绕数据资产评估及入表的全过程,借鉴了数据资源入表“五步法”,重点从数据合规与确权、数据治理体系、预期经济利益可行性分析、相关成本的合理归集与分摊、列报与披露和安全监管保障体系等环节,分析了数据资源入表的技术路线。
转载说明:本号转载的文章来源于公开渠道或经授权许可,仅为分享观点、资讯之目的,不代表[数据资产管理大讲堂]观点。文中使用的图片来源于网络。文章、图片版权均归原作者所有,若有侵权敬请联系删除。
往期推荐:
一文分清:数据要素、数据资源、数据资产、数字资产、数据管理、数据治理、数字资产入表!
城投公司想要数据资产入表,哪些数据可以进行入表融资?(附案例)
# | 近期课程安排表(*更有线上课程) | 地点 |
---|---|---|
1 | 地方债务风险化解严监管下项目合规运作及城乡区域综合开发项目投融资创新落地实操与风险防范培训班 | 4月25-28 西安市 5月21-24 厦门市 |
2 | 首席数据官岗位能力提升高级培训班 | 4月25-28 西安市 5月21-24 厦门市 |
3 | 新政下“三大工程”合规运作、投融资创新实操及实战案例培训班 | 4月25-28 西安市 5月21-24 厦门市 |
4 | 高质量发展下数据授权运营项目实操谋划与风险防范暨首席数据官岗位能力提升高级培训班 | 4月25-28 西安市 5月21-24 厦门市 |
5 | 新《公司法》《关于进一步完善国有资本经营预算制度的意见》背景下国有企业重组整合、完善治理、业绩考核及健全市场化机制实务研修班 | 5月10-13 武汉市 5月24-27 郑州市 |
6 | EPC 模式下的设计管理、招投标、造价、索赔与审计暨 EPC 全过程管理实务专题培训班 | 5月10-13 武汉市 5月24-27 郑州市 |
7 | 国有企业招标采购合规化管理、风险管控实战、审计监督及案例分析专题培训班 | 5月10-13 武汉市 5月22-25 南宁市 |
8 | 国有企业落实“管、办、监”新要求进一步规范招标采购工作全流程实务及专项整治工作中典型案例整改举措专题培训班 | 5月14-19 重庆市 5月22-27 西安市 |
9 | “学政策 提能力 促规范”暨2024年政府采购全流程及案例专题培训班 | 5月14-19 重庆市 5月22-27 西安市 |
10 | “新时期企事业单位公文写作与处理暨办公室行政人员综合管理技能提升”高级研修班 | 5月10-13 武汉市 5月20-23 南宁市 |
11 | 深入实施国有企业改革深化提升行动背景下,人力资源管理创新、梯队建设、薪酬绩效管理实务研修班 | 5月10-13 武汉市 5月24-27 郑州市 |
12 | 新版《建设工程工程量清单计价标准》释义、建设工程造价全过程精细化管控与《民法典合同编通则司法解释》解读专题培训班 | 5月10-13 武汉市 5月24-27 郑州市 |