一种另辟蹊径的聚类:EM聚类
请点击上方 趣味数据周刊 关注阅读
本文期号:20191229
用概率分布去聚类
library("MASS")set.seed(12345)mux1<-0 ;muy1<-0 ;mux2<-15 ;muy2<-15ss1<-10 ;ss2<-10 ;s12<-3;sigma<-matrix(c(ss1,s12,s12,ss2),nrow=2,ncol=2)Data1<-mvrnorm(n=100,mu=c(mux1,muy1),Sigma=sigma,empirical=TRUE)Data2<-mvrnorm(n=50,mu=c(mux2,muy2),Sigma=sigma,empirical=TRUE)Data<-rbind(Data1,Data2)plot(Data,xlab="x",ylab="y")library("mclust")DataDens<-densityMclust(data=Data)plot(x=DataDens,type="persp",col=grey(level=0.8),xlab="x",ylab="y")1,EM聚类是什么?
2,不断交替的EM
3,EM聚类中聚类数目的问题
4,聚类可视化
library("mclust")EMfit<-Mclust(data=Data)summary(EMfit)summary(EMfit,parameters=TRUE)plot(EMfit,"classification")plot(EMfit,"uncertainty")plot(EMfit,"density")