美女 “十八” 变,服装看到见
人靠衣装,马靠鞍;鲁迅说:“好看的姑娘有两种:一种是长的好看,一种是穿的好看”。年龄的差异与气质变化,在服装选择上可以显而易见。基于2万多条女性用户的服装购买记录,一起探索女性年龄与服装选择的别样色彩。
一生中我们选择的服装类型,大部分都在下图中可以找到。结尾的结论也是很亮眼;对女性来说,岁月无情,愿美丽仍在。
#用sqldf分析tagd <- sqldf("select age,count(1) as cnt from wd group by age")ggplot(tagd, aes(age, cnt ,colour=age,scales="free"))+geom_line()
summary(tagd$age) Min. 1st Qu. Median Mean 3rd Qu. Max. 18.00 37.00 56.00 56.14 75.00 99.00agetag<-sqldf("select tt as age, tag, count(1) as cnt from tagd group by age, tag")
# 对应分析函数需要宽数据,这里将长数据转为宽数据library(tidyr)long2short = spread(agetag,key=tag,value=cnt)
#删除你不想要的列shortd<-long2short[,-which(names(long2short)%in%c("V1"))]
#用0来替代NA值shortd[is.na(shortd)] <- 0rownames(shortd) <- c('18-25', '25-32', '32-39', '39-46', '46-53', '53-60', 'other')juzheng<-shortd[,-which(names(shortd)%in%c("age","Fine gauge", "Pants", "Sleep", "Swim", "Trend", "Casual bottoms"))]library(ca)options(digits=3)brand.ca=ca(juzheng)#输出相关矩阵(主成分的思想)plot(brand.ca)