北师版初一数学上册重点
怎样才能每天都收到这样的文章呢?
只需点标题下“语数英”关注即可!
如果要下载电子版教材。
关注后,对后台对话框回复:试卷
(※表示重点部分)
第一章 丰富的图形世界
1、生活中的立体图形
2、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
3、 点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
4、正方体的平面展开图:11种
圆柱的侧面展开图是长方形,圆锥的侧面展开图是扇形。
5、截一个几何体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
6、从三个方向看物体的形状
三个方向分别是:正面、左面和上面。
从正面看到的图,叫做从正面看。
从左面看到的图,叫做从左面看。
从上面看到的图,叫做从上面看。
第二章 有理数及其运算
1、有理数的分类(整数与分数统称为有理数。)
※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。
※任何一个有理数,都可以用数轴上的一个点来表示。(反过来,不能说数轴上所有的点都表示有理数)
※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。(0的相反数是0)
※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。
数轴上两点表示的数,右边的总比左边的大。正数在原点的右边,负数在原点的左边。
※绝对值的定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。数a的绝对值记作|a|。
※正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。
※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;
互为相反数的两数(除0外)的绝对值相等;
任何数的绝对值总是非负数,即|a|≥0
※比较两个负数的大小,绝对值大的反而小。比较两个负数的大小的步骤如下:
①先求出两个数负数的绝对值;②比较两个绝对值的大小;
③根据“两个负数,绝对值大的反而小”做出正确的判断。
※绝对值的性质:
①对任何有理数a,都有|a|≥0.②若|a|=0,则|a|=0,反之亦然.
③若|a|=b,则a=±b.④对任何有理数a,都有|a|=|-a|
※有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。③一个数同0相加,仍得这个数。
灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。
※有理数减法法则:减去一个数,等于加上这个数的相反数。
有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。
有理数的加减法混合运算的步骤:
①写成省略加号的代数和。在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②利用加法则,加法交换律、结合律简化计算。
(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。)
※有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。②任何数与0相乘,积仍为0。
※如果两个数互为倒数,则它们的乘积为1。
※乘法的交换律、结合律、分配律在有理数运算中同样适用。
有理数乘法运算步骤:①先确定积的符号;
②求出各因数的绝对值的积。
乘积为1的两个有理数互为倒数。
①零没有倒数。②求分数的倒数,就是把分数的分子分母颠倒位置。一个带分数要先化成假分数。③正数的倒数是正数,负数的倒数是负数。
※有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。
②0除以任何非0的数都得0。0不可作为除数,否则无意义。
※有理数的乘方
a×a×a……×a=an(a为底数,n为指数,an为幂)
※注意:①一个数可以看作是本身的一次方,如5=51;
②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。
※乘方的运算性质:
①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数;
③任何数的偶数次幂都是非负数;④1的任何次幂都得1,0的任何次幂都得0;
⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
※有理数混合运算法则:①先算乘方,再算乘除,最后算加减②如果有括号,先算括号里面的
第三章 整式及其加减
字母可以表示任何数。
※代数式的概念:
用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;
②代数式中不含有“=、>、<、≠”等符号。等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;
③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。
※代数式的书写格式:
①代数式中出现乘号,通常省略不写,如vt;
②数字与字母相乘时,数字应写在字母前面,如4a;
③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘
④数字与数字相乘,一般仍用“×”号,即“×”号不省略;
⑤在代数式中出现除法运算时,一般按照分数的写法来写。
⑥在表示和(或)差代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面。
※代数式的系数:
代数式中的数字中的数字因数叫做代数式的系数。如3x,4y的系数分别为3,4。
注意:①单个字母的系数是1,如a的系数是1;
②只含字母因数的代数式的系数是1或-1,如-ab的系数是-1。a3b的系数是1
※代数式的项:
代数式
注意:在交待某一项时,应与前面的符号一起交待。
※同类项:
所含字母相同,并且相同字母的指数也相同的项叫做同类项。
注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。这两个条件缺一不可;
②同类项与系数无关,与字母的排列顺序无关;③几个常数项也是同类项。
※合差同类项:
把代数式中的同类项合并成一项,叫做合并同类项。
①合并同类项的理论根据是逆用乘法分配律;
②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
注意:
①如果两个同类项的系数互为相反数,合并同类项后结果为0;
②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;
③只要不再有同类项,就是最后结果,结果还是代数式。
※根据去括号法则去括号:
括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。
※根据分配律去括号:
括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。
※注意:
①去括号时,要连同括号前面的符号一起去掉;
②去括号时,首先要弄清楚括号前是“+”号还是“-”号;
③改变符号时,各项都变号;不改变符号时,各项都不变号。
探索与表达规律
探索规律的常见类型及方法
(1)数字规律和代数式规律
常见的几种数字规律形式:
①
②
(2)新运算的规律
新运算是
新运算的实质是有理数的几种混合运算,关键是观察出用到了哪些运算,要特别注意运算的顺序.
(3)图形规律
探索图形规律的实质是用字母表示数,即列代数式.要从不同的角度分析,可用去括号、合并同类项验证规
第四章 基本平面图形
1、※线段、射线、直线
名称 | 图形 | 表示方法 | 端点 | 长度 |
直线 | 直线AB(或BA) 直线l | 无端点 | 无法度量 | |
射线 | 射线OM | 1个 | 无法度量 | |
线段 | 线段AB(或BA) 线段l | 2个 | 可度量长度 |
直线的性质
※(1)直线公理:经过两个点有且只有一条直线。(两点确定一条直线。)
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
2、比较线段的长短
线段的性质
※(1)线段公理:两点之间的所有连线中,线段最短。(两点之间线段最短。)
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的大小关系和它们的长度的大小关系是一致的。
线段的中点:
点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。AM = BM =1/2AB (或AB=2AM=2BM)。
3、
(1)角
※有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。
(2)角的表示
※角的表示方法有以下四种:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
角的度量
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。
把1’ 的角60等分,每一份叫做1秒的角,1秒记作“1””。
1°=60’,1’=60”
4、角的比较
二种方法进行比较:一种是用量角器量出它们的度数,再进行比较;另一种是将两个角的顶点及一条边重合,另一条边放在重合边的同侧就可以比较大小。
※角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
※5、多边形和圆的初步认识
多边形:由若干条不在同一条直线上的线段首尾顺次相连组成的封闭平面图形叫做多边形。连接不相邻两个顶点的线段叫做多边形的对角线。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以画(n-3)条对角线,把这个n边形分割成(n-2)个三角形。
各边相等,各角也相等的多边形叫做正多边形
圆:平面上,一条线段绕着一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点O称为圆心,线段OA的长称为半径的长(通常简称为半径)。
圆上任意两点A、B间的部分叫做圆弧,简称弧,读作“圆弧AB”或“弧AB”;由一条弧AB和经过这条弧的端点的两条半径OA、OB所组成的图形叫做扇形。顶点在圆心的角叫做圆心角。
第五章 一元一次方程
1、认识一元一次方程
含有未知数的等式叫做方程。
※只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。
能使方程左右两边相等的未知数的值叫做方程的解。
※等式的性质
(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。
(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。
2、求解一元一次方程
把方程中的某一项,改变符号后,从方程的一边移到另一边,这种变形叫做移项.
※解一元一次方程的一般步骤:
(1)去分母(2)去括号(3)移项(4)合并同类项(5)将未知数的系数化为1,把一个一元一次方程“转化”成x=a的形式。
第六章 数据的收集与整理
1、数据的收集
通过调查、试验等方式获得数据信息,当调查或试验项目很大,还可以通过查阅报纸、相关文献或上网的方式,获得数据信息
2、普查与抽样调查
为了特定目的对全部考察对象进行的全面调查,叫做普查。其中被考察对象的全体叫做总体,组成总体的每一个被考察对象称为个体。
从总体中抽取部分个体进行调查,这种调查称为抽样调查,其中从总体抽取的一部分个体叫做总体的一个样本。
普查的优缺点:数据比较准确,能直接获得总体的情况,但工作量大,有时且有破坏性,有一定的客观条件的限制。抽样调查反之。抽样调查时要注意样本的代表性和广泛性。
3、 数学的表示
扇形统计图
扇形统计图:利用圆与扇形来表示总体与部分的关系,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。(各个扇形所占的百分比之和为1)
圆心角度数=360°×该项所占的百分比。(各个部分的圆心角度数之和为360°)
频数直方图
频数直方图是一种特殊的条形统计图,它将统计对象的数据进行了分组画在横轴上,纵轴表示各组数据的频数。
制作频数直方图的步骤:
(1)确定所给数据的最大值和最小值;(2)将数据适当分组;(3)统计每组中数据出现的次数;
※4、各种统计图的特点
条形统计图:能清楚地表示出每个项目的具体数目。
折线统计图:能清楚地反映事物的变化情况。
扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
小学英语老师必领|8000个优质名师视频+课件+教案+工作总结,史上最佳学习资料!
声明:本文来源网络,如有侵权,还请联系删除请加小编QQ微信同号7985333
扫描上方二维码,关注后回复试卷
试卷电子版领取