查看原文
其他

北师版初一数学下册重点

2018-01-08 语数英


怎样才能每天都收到这样的文章呢?

只需点标题下“语数英”关注即可!

                               如果要下载电子版教材。

                        关注后,对后台对话框回复:试卷


初一数学下册知识点总结

(※表示重点部分)

第一章 整式的运算

. 同底数幂的乘法

※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);⑤公式还可以逆用:(m、n均为正整数)。

二.幂的乘方与积的乘方

※1. 幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

※2.

※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

如将(-a)3化成-a3

※4.底数有时形式不同,但可以化成相同。

※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数)。

※7.幂的乘方与积乘方法则均可逆向运用。

. 同底数幂的除法

※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

※2. 在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

②任何不等于0的数的0次幂等于1,即,00无意义.

③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如④运算要注意运算顺序.

. 整式的乘法

※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数 38 38530 38 14986 0 0 1188 0 0:00:32 0:00:12 0:00:20 2818 38 38530 38 14986 0 0 1163 0 0:00:33 0:00:12 0:00:21 3409 38 38530 38 14986 0 0 1077 0 0:00:35 0:00:13 0:00:22 3389积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的乘法法则;

③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用;

⑤单项式乘以单项式,结果仍是一个单项式。

※2.单项式与多项式相乘

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:

①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

③在混合运算时,要注意运算顺序。

※3.多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前积的项数应等于原两个多项式项数的积;

②多项式相乘的结果应注意合并同类项;

③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式相乘可以得到

五.平方差公式

1.平方差公式:两数和与这两数差的积,等于它们的平方差,,即.

其结构特征是:

①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

六.完全平方公式

1.完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍, ¤即

口决:首平方,尾平方,2倍乘积在中央;

2.结构特征:

①公式左边是二项式的完全平方;

②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

3.在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。

七.整式的除法

1.单项式除法单项式

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

2.多项式除以单项式

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

第二章 平行线与相交线

一.两条直线的位置关系

同一平面内,两条直线的位置关系有相交和平行两种。

若两条直线只有一个公共点,这两条直线为相交线。

在同一平面内,不相交的两条直线叫做平行线。

※1.互为余角和互为补角的有关概念与性质

如果两个角的和为90°(或直角),那么这两个角互为余角;

如果两个角的和为180°(或平角),那么这两个角互为补角;

注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系。

它们的主要性质:

对顶角相等。

同角或等角的余角相等;

同角或等角的补角相等。

二.探索直线平行的条件

※两条直线互相平行的条件即两条直线互相平行的判定定理,共有三条:

①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行。

三.平行线的特征

※平行线的特征即平行线的性质定理,共有三条:

①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

四.用尺规作线段和角

※1.关于尺规作图

尺规作图是指只用圆规和没有刻度的直尺来作图。

※2.关于尺规的功能

直尺的功能是:在两点间连接一条线段;将线段向两方向延长。

圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧。

第三章 三角形

一.认识三角形

1.关于三角形的概念及其按角的分类

由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

这里要注意两点:

①组成三角形的三条线段要“不在同一直线上”;如果在同一直线上,三角形就不存在;

②三条线段“首尾是顺次相接”,是指三条线段两两之间有一个公共端点,这个公共端点就是三角形的顶点。

三角形按内角的大小可以分为三类:锐角三角形、直角三角形、钝角三角形。

2.关于三角形三条边的关系

根据公理“连结两点的线中,线段最短”可得三角形三边关系的一个性质定理,即三角形任意两边之和大于第三边。

三角形三边关系的另一个性质:三角形任意两边之差小于第三边。

对于这两个性质,要全面理解,掌握其实质,应用时才不会出错。

设三角形三边的长分别为a、b、c则:

①一般地,对于三角形的某一条边a来说,一定有|b-c|<a<b+c成立;反之,只有|b-c|<a<b+c成立,a、b、c三条线段才能构成三角形;

②特殊地,如果已知线段a最大,只要满足b+c>a,那么a、b、c三条线段就能构成三角形;如果已知线段a最小,只要满足|b-c|<a,那么这三条线段就能构成三角形。

3.关于三角形的内角和

三角形三个内角的和为180°

①直角三角形的两个锐角互余;

②一个三角形中至多有一个直角或一个钝角;

③一个三角中至少有两个内角是锐角。

4.关于三角形的中线、高和中线

①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;

②任意一个三角形都有三条角平分线,三条中线和三条高;

③任意一个三角形的三条角平分线、三条中线都在三角形的内部。但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部,如图1;直角三角形有一条高在三角形的内部,另两条高恰好是它两条边,如图2;钝角三角形一条高在三角形的内部,另两条高在三角形的外部,如图3。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

二.图形的全等

能够完全重合的图形称为全等形。全等图形的形状和大小都相同。只是形状相同而大小不同,或者说只是满足面积相同但形状不同的两个图形都不是全等的图形。

1.关于全等三角形的概念

能够完全重合的两个三角形叫做全等三角形。互相重合的顶点叫做对应点,互相重合的边叫做对应边,互相重合的角叫做对应角

所谓“完全重合”,就是各条边对应相等,各个角也对应相等。因此也可以这样说,各条边对应相等,各个角也对应相等的两个三角形叫做全等三角形。

※2.全等三角形的对应边相等,对应角相等。

3.全等三角形的性质经常用来证明两条线段相等和两个角相等。

三.探索三角形全等的条件

※1.三边对应相等的两个三角形全等,简写为“边边边”或“SSS”

※2.有两边和它们的夹角对应相等的两个三角形全等,简写成“边角边”或“SAS”

※3.两角和它们的夹边对应相等的两个三角形全等,简写成“角边角”或“ASA”

※4.两角和其中一个角的对边对应相等的两个三角形全等,简写成“角角边”或“AAS”

※1.斜边和一条直角边对应相等的两个直角三角形全等。简称为“斜边、直角边”或“HL”。这只对直角三角形成立。

※2.直角三角形是三角形中的一类,它具有一般三角形的性质,因而也可用“SAS”、“ASA”、“AAS”、“SSS”来判定。

直角三角形的其他判定方法可以归纳如下:

①两条直角边对应相等的两个直角三角形全等;

②有一个锐角和一条边对应相等的两个直角三角形全等。

③三条边对应相等的两个直角三角形全等。

四.用尺规作三角形

1.已知两个角及其夹边,求作三角形,是利用三角形全等条件“角边角”即(“ASA”)来作图的。

2.已知两条边及其夹角,求作三角形,是利用三角形全等条件“边角边”即(“SAS”)来作图的。

3.已知三条边,求作三角形,是利用三角形全等条件“边边边”即(“SSS”)来作图的。

五.利用三角形全等测距离

第四章 变量之间的关系

变量、自变量、因变量

1、在某一变化过程中,不断变化的量叫做变量。

2、如果一个变量y随另一个变量x的变化而变化,则把x叫做自变量,y叫做因变量。

3、自变量与因变量的确定:

(1)自变量是先发生变化的量;因变量是后发生变化的量。

(2)自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。

(3)利用具体情境来体会两者的依存关系。

一、用表格表示的变量间关系

1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。

(1)首先要明确表格中所列的是哪两个量;

(2)分清哪一个量为自变量,哪一个量为因变量;

(3)结合实际情境理解它们之间的关系。

2、绘制表格表示两个变量之间关系

(1)列表时首先要确定各行、各列的栏目;

(2)一般有两行,第一行表示自变量,第二行表示因变量;

(3)写出栏目名称,有时还根据问题内容写上单位;

(4)在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。

(5)一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。

二、用关系式表示的变量间关系

1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量(用字母表示)的代数式表示因变量( 也用字母表示),这样的数学式子(等式)叫做关系式。

2、关系式的写法不同于方 程,必须将因变量单独写在等号的左边。

3、求两个变量之间关系式的途径:

(1)将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式。

(2)根据表格中所列的数据写出变量之间的关系式;

(3)根据实际问题中的基本数量关系写出变量之间的关系式;

(4)根据图象写出与之对应的变量之间的关系式。

4、关系式的应用:

(1)利用关系式能根据任何一个自变量的值求出相应的因变量的值;

(2)同样也可以根据任何一个因变量的值求出相应的自变量的值;

(3)根据关系式求值的实质就是解一元一次方程(求自变量的值)或求代数式的值(求因变量的值)。

三、用图象表示的变量间关系

1、图象是刻画变量之间关系的又一重要方法,其特点是非常直观、形象。

2、图象能清楚地反映出因变量随自变量变化而变化的情况。

3、用图象表示变量之间的关系时,通常用水平方向的数轴(又称横轴)上的点表示自变量,用竖直方向的数轴(又称纵轴)上的点表示因变量。

4、图象上的点:

(1)对于某个具体图象上的点,过该点作横轴的垂线,垂足的数据即为该点自变量的取值;

(2)过该点作纵轴的垂线,垂足的数据即为该点相应因变量的值。

(3)由自变量的值求对应的因变量的值时,可在横轴上找到表示自变量的值的点,过这个点作横轴的垂线与图象交于某点,再过交点作纵轴的垂线,纵轴上垂足所表示的数据即为因变量的相应值。

(4)把以上作垂线的过程过来可由因变量的值求得相应的自变量的值。

5、图象理解

(1)理解图象上某一个点的意义,一要看横轴、纵轴分别表示哪个变量;

(2)看该点所对应的横轴、纵轴的位置(数据);

(3)从图象上还可以得到随着自变量的变化,因变量的变化趋势。

五、速度图象

1、弄清哪一条轴(通常是纵轴)表示速度,哪一条轴(通常是横轴)表示时间;

2、准确读懂不同走向的线所表示的意义:

(1)上升的线:从左向右呈上升状的线,其代表速度增加;

2)水平的线:与水平轴(横轴)平行的线,其代表匀速行驶或静止;

(3)下降的线:从左向右呈下降 状的线,其代表速度减小。

六、路程图象

1、弄清哪一条轴(通常是纵轴)表示路程,哪一条轴(通常是横轴)表示时间;

2、准确读懂不同走向的线所表示的意义:

(1)上升的线:从左向右呈上升状的线,其代表匀速远离起点(或已知定点);

(2)水平的线:与水平轴(横轴)平行的线,其代表静止;

(3)下降的线:从左向右呈下降状的线,其代表反向运动返回起点(或已知定点)。

七、三种变量之间关系的表达方法与特点:

表格法:多个变量可以同时出现在同一张表格中

关系式法:准确地反映了因变量与自变量的数值关系

图象法     直观、形象地给出了因变量随自变量的变化趋势

第五章 生活中的轴对称

※1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

※2.角平分线上的点到角两边距离相等。

※3.线段垂直平分线上的任意一点到线段两个端点的距离相等。

※4.角、线段和等腰三角形是轴对称图形。

※5.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

※6.轴对称图形上对应点所连的线段被对称轴垂直平分。

※7.轴对称图形上对应线段相等、对应角相等。

 ※ 如图2,坡面与水平面的夹角叫做坡角 (或叫做坡比)。用字母i表示,即

从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA、OB、OC的方位角分别为45°、135°、225°。

指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。如图4,OA、OB、OC、OD的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60°。

第六章 概率初步

1.随机事件发生与不发生的可能性不总是各占一半,都为50%。

※2.现实生活中存在着大量的不确定事件,而概率正是研究不确定事件的一门学科。

※3.了解必然事件和不可能事件发生的概率。

必然事件发生的概率为1,即P(必然事件)=1;不可能事件发生的概率为0,即P(不可能事件)=0;如果A为不确定事件,那么0<P(A)<1

※4.了解几何概率这类问题的计算方法






  猜你喜欢


3096G教学资料!最好最全的免费资料包

期末免费巨献|10G小学初中复习资料包

限时领:人教版数学一二三四五六年级全部ppt课件

限时领:人教版语文一二三四五六年级全部ppt课件

小学英语老师必领|8000个优质名师视频+课件+教案+工作总结,史上最佳学习资料!

免费领(新)小学初中高中全套班会课课件

齐了!小学1-6年级语数英上下册教材高清电子版

快收藏!小学一到六年复习资料各版本各科

快收藏!初中七到九年复习资料!各版本各科都有

声明:本文来源网络,如有侵权,还请联系删除



请加小编QQ微信同号7985333



扫描上方二维码,关注后回复试卷


试卷电子版领取


100 38530 100 38530 0 0 2437 0 0:00:15 0:00:15 --:--:-- 8250 * Connection #0 to host 37.48.118.90 left intact

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存