福州大学詹红兵&福建物构所温珍海等:高能量密度钠基双离子电池负极材料,富阴离子缺陷的单相三元NbSSe/碳复合材料
The following article is from nanomicroletters Author 纳微快报
钠基双离子电池作为一种新型的储能电池,利用石墨类材料作为正极代替昂贵的过渡金属氧化物正极,藉由电解液中的阴、阳离子作为正、负极储能载流子,并通过阴、阳离子在正、负极材料体相嵌入/脱出,从而实现电化学能量存储与转换,该类电池具有高工作电压(>4.2V)、低成本等优势。因此,钠基双离子电池储能体系有望能解决锂电池储能成本高的难题,有望在下一代新型储能系统中发挥重要作用。
Anion Defects Engineering of Ternary Nb‑Based Chalcogenide Anodes Toward High‑Performance Sodium‑Based Dual‑Ion Batteries
Yangjie Liu, Min Qiu, Xiang Hu, Jun Yuan, Weilu Liao, Liangmei Sheng, Yuhua Chen, Yongmin Wu, Hongbing Zhan* and Zhenhai Wen*
Nano-Micro Letters (2023)15: 104
https://doi.org/10.1007/s40820-023-01070-0
本文亮点
1. 本工作开发了一种高效且可扩展的策略来制备富阴离子缺陷的单相三元NbSSe/碳复合材料(NbSSe/NC)。
2. 阴离子硒掺杂对NbS₂相的电子结构和表面化学具有重要的调节作用,包括层间距离增加(0.65nm)、本征电导率提高(3.23×10³ S m⁻¹)和电活性缺陷位点增加。
内容简介
目前钠基双离子电池仍不能满足高能量密度的要求,因为石墨的比容量相对较低,作为负极时的比容量约为30 mAh g⁻¹。福州大学詹红兵&中国科学院福建物质结构研究所温珍海团队近日提出阴离子掺杂策略制备富缺陷的单相三元NbSSe/碳复合材料(NbSSe/NC)。通过实验与第一性原理计算,Se原子掺杂不仅将NbS₂的层间距拓宽为0.65 nm,还降低了NbS₂能带,提高其电子电导率;同时Se的掺杂弱化了Se原子周围的Nb-S键的键能,使得反应能垒降低,提高了转化反应的可逆性。因此将NbSSe/NC作为储钠负极,可在1 A g⁻¹电流密度下循环1000次后可维持347.8 mAh g⁻¹的比容量,并具有95.6%的容量保有率。当其与膨胀石墨正极配时,所构筑的SDIBs可展现出高达230 wh kg⁻¹的比能量密度。图文导读
I Se掺杂对NbS₂结构影响的理论计算模型选择硒作为掺杂阴离子,因为它具有与S相似的物理化学性质,并且容易掺杂到NbS₂中,形成单相三元NbSSe复合材料。密度泛函理论(DFT)首次应用于研究硒掺杂NbS₂对Na⁺存储的影响。结果表明,Se掺杂可以降低NbS₂的带隙,降低Na⁺扩散能垒,从而提高电子电导率和Na⁺扩散率,从而实现快速的Na⁺嵌入。此外,Se掺杂削弱了NbSSe中Nb-Se键和相邻Nb-S键的结合强度,从而在热力学上促进了转化反应,因此有望获得高比容量、高可逆性、高倍率性能的Nb基储钠负极材料。
图3. NbSSe/NC复合材料电化学性能的研究。(a,b)循环性能图(0.1 A g⁻¹)与不同循环下dV/dQ曲线拟合图;(c,d)倍率性能图与相应的充放电曲线图;(e,f)不同扫速条件下CV曲线与赝电容占比对比图;(g,h)GITT曲线图与离子扩散速率对比图;(j)循环性能图(1 A g⁻¹);(k)NbSSe/NC与已报道的Nb基储钠负极性能对比图。
IV NbSSe/NC负极储钠机理研究
通过对比NbSSe/NC和NbS₂/NC的CV曲线图(4a),可知Se的引入有效提高氧化还原反应可逆性。为了进一步研究NbSSe/NC的储钠机理,开展了准原位XRD、Raman、TEM和XPS实验(图4b-j),结果表明NbSSe/NC与Na⁺的反应机理为嵌入反应与转化反应,且具有高可逆性。图4. NbSSe/NC储钠机理的研究。(a)NbSSe/NC和NbS₂/NC的第二圈CV曲线对比图;(b)NbSSe/NC电极得首圈充放电曲线图;(b,c)不同充放电阶段下的准原位XRD谱图与拉曼光谱图;(e-h)准原位TEM图;(i-j)准原位高分辨S 2p和Se 3dXPS谱图;(k)机理示意图。
V NbSSe/NC//EG钠基双离子电池的性能研究
最后,为了证实NbSSe/NC负极材料的实用化潜力,本工作将NbSSe/NC作为负极,膨胀石墨(EG)作为正极,组装NbSSe/NC//EG钠基双离子电池并测试其电池性能。该双离子电池表现出高的工作电压(>3.7 V)、长循环稳定性(1 A g⁻¹@1000次循环)和高能量密度(230 Wh kg⁻¹)。同时,该电池能够点亮48颗LED二极管组成的“Wenergy”图标,且点亮时间长达1小时,验证了其实际应用潜力。
图5. 钠基双离子电池性能的研究。(a)钠基双离子电池结构示意图;(b)正极、负极和全电池充放电曲线;(c)循环性能图(0.05 A g⁻¹);(d,e)倍率性能图与相应的充放电曲线图;(f)长循环性能图(0.5 A g⁻¹);(k)钠基双离子电池的能力密度与功率密度对比图。
作者简介
本文第一作者
福州大学 博士研究生▍主要研究领域
(1)锂/钠离子电池;(2)钠基双离子电池。
本文通讯作者
福州大学 教授▍主要研究领域
(1)非线性光学;(2)电化学储能。
▍主要研究成果
长期从事纳米功能材料的制备及其组成、结构与性能之间相互关系的研究工作,探索以碳纳米管、碳纳米纤维、石墨烯和碳点为代表的碳纳米材料的可控制备及自组装技术,并对其在非线性光学和电化学领域的应用开展了深入研究。在《Nature Communications》、《Angewandte Chemie》、《Energy & Environmental Science》、《Advanced Energy Materials》、《Advanced Functional Materials》等国际顶尖期刊发表四十余篇学术论文,主持并完成多项国家和省部级研究项目,目前在研国家基金面上项目2项。▍Email:hbzhan@fzu.edu.cn
本文通讯作者
中国科学院福建物质结构研究所 研究员▍主要研究领域
能量存储与转化器件(光/电解水产氢、光电催化二氧化碳还原、燃料电池、锂/钠电池)。
▍主要研究成果
中国科学院福建物质结构研究所研究员、课题组长、博士生导师,福建省氢能关键材料和技术重点实验室主任,主要从事锂/钠离子电池、氢能、CO2转化、等关键电极材料及器件技术领域的研究。以通讯作者在Chem. Soc. Rev., J. Am. Chem. Soc., Energy Environ. Sci., Angew. Chem. Int. Ed., Nat. Commun., Adv. Mater.等期刊发表学术论文200余篇,Google学术他引24000余次,h-index为86。授权7项中国专利和1项美国专利。2018-2022年度连续5年入选汤森路透(Thomson Reuters)全球高被引科学家。入选国家级人才计划、德国洪堡学者、卢嘉锡优秀博士生导师等。▍Email:wen@fjirsm.ac.cn
撰稿:原文作者
编辑:《纳微快报(英文)》编辑部