【电子课本】新苏教版 初中七-九年级数学上下册(全6册 )
6. 苏教版七年级数学上册 【电子课本】
新苏科版数学九年级上册知识点汇总
第一章 图形与证明(二)
一、知识框架
4、等腰梯形的性质和判定
注意:
(1)解决梯形问题的基本思路:通过分割和拼接转化成三角形和平行四边形进行解决即需要掌握常作的辅助线。
(2)梯形的面积公式:
5、中位线
二、知识详解
1、等腰三角形的判定、性质及推论:
①性质:等腰三角形的两个底角相等(等边对等角)
②判定:有两个角相等的三角形是等腰三角形(等角对等边)
③推论:等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(即“三线合一”)
2、等边三角形的性质及判定定理:
①性质定理:等边三角形的三个角都相等,并且每个角都等于60度;等边三角形的三条边都满足“三线合一”的性质;等边三角形是轴对称图形,有3条对称轴。
②判定定理:有一个角是60度的等腰三角形是等边三角形。或者三个角都相等的三角形是等边三角形。
3、线段的垂直平分线:
(1)线段垂直平分线的性质及判定
①性质:线段垂直平分线上的点到这条线段两个端点的距离相等。
②判定:到一条线段两个端点距离相等的点在这条线段的垂直平分线上。
(2)三角形三边的垂直平分线的性质:
三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。
(3)如何用尺规作图法作线段的垂直平分线
分别以线段的两个端点A、B为圆心,以大于AB的一半长为半径作弧,两弧交于点M、N;作直线MN,则直线MN就是线段AB的垂直平分线。
4、角平分线:
(1)角平分线的性质及判定定理
①性质:角平分线上的点到这个角的两边的距离相等;
②判定:在一个角的内部,且到角的两边的距离相等的点,在这个角的平分线上。
(2)三角形三条角平分线的性质定理。
①性质:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。
(3)如何用尺规作图法作出角平分线。
5、直角三角形:
(1)勾股定理及其逆定理
①定理:直角三角形的两条直角边的平方和等于斜边的平方。
②逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
(2)直角三角形全等的判定定理
①定理:斜边和一条直角边对应相等的两个直角三角形全等(HL)
6、几种特殊四边形的性质:
7、 几种特殊四边形的判定方法:
8、三角形的中位线:
(1)连结三角形两边中点的线段叫做三角形的中位线。
区别三角形的中位线与三角形的中线。
(2)三角形中位线的性质
三角形的中位线平行于第三边并且等于它的一半.
9、梯形的中位线:
⑴连结梯形两腰中点的线段叫做梯形的中位线。
注意:中位线是两腰中点的连线,而不是两底中点的连线。
⑵梯形中位线的性质
梯形的中位线平行于两底,并且等于两底和的一半。
第二章 数据的离散程度
一、知识点复习
1、极差:
(1)定义:一组数据中的最大值与最小值的差叫做极差。
(2)计算公式:极差=最大值-最小值。
(3)定理:极差是刻画数据离散程度的一个统计量,可以反映一组数据的变化范围。一般说,极差越小,则说明数据的波动幅度越小。
2、 方差:
(1)定义:各个数据与平均数的差的平均数叫做这组数据的方差,记作S2。
(2)巧用方差公式:
3、标准差:
(1)定义:方差的算术平方根叫做这组数据的标准差,记作S。
4、意义:
(1)极差、方差和标准差都是用来描述一组数据波动情况的特征,常用来比较两组数据的波动大小,我们通常研究的是这组数据的个数相等、平均数相等或比较接近的情况。
(2)方差较大的波动较大,方差较小的波动较小。
(3)方差大,标准差就大,方差小,标准差就小。因此标准差同样反映数据的波动大小。
注意:对两组数据来说,极差大的那一组不一定方差大,反过来,方差大的极差也不一定大。
第三章 二次根式
一、知识框架
第四章 一元二次方程
一、知识框架
二、知识详解
1、一元二次方程定义:
含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:
ax+bx+c=0(a
3、一元二次方程的解法:
(1)直接开平方法:
直接开平方法适用于解形如
当
(2)配方法一般步骤:
①方程ax2+bx=0(a
②将所得方程的常数项移到方程的右边。
③所得方程的两边都加上一次项系数一半的平方
④配方,化成(x+b)2=b。
⑤开方。当
4、公式法:
(1)定义:公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法。
一元二次方程
5、因式分解法:
一元二次方程的一边另一边易于分解成两个一次因式的乘积时使用此方法。
6、一元二次方程根的判别式:
(1)定义:一元二次方程
中,b2-4ac叫做一元二次方程
(2)性质:当b2-4ac>0时,方程有两个不相等的实数根;当b2-4ac=0时,方程有两个相等的实数根;当b2-4ac<0时,方程没有实数根。
7、一元二次方程根与系数的关系:
如果方程
第五章 中心对称图形二(圆的有关知识)
一、知识框架
二、知识点详解
1、圆的概念
(1)集合形式的概念:
①圆可以看作是到定点的距离等于定长的点的集合;
②圆的外部:可以看作是到定点的距离大于定长的点的集合;
③圆的内部:可以看作是到定点的距离小于定长的点的集合。
(2)轨迹形式的概念:
①圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;
②垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线
③角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;
④到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;
⑤到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
2、点与圆的位置关系:
3、直线与圆的位置关系:
4、圆与圆的位置关系:
5、垂径定理:
垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:
(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;
(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧
以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:
中任意2个条件推出其他3个结论。
推论2:圆的两条平行弦所夹的弧相等。
6、圆心角定理:
圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:
7、圆周角定理:
(1)圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:
(2)圆周角定理的推论:
推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:
推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:
推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:
注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
8、圆内接四边形:
圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。即:
9、切线的性质与判定定理:
(1)切线的判定定理:过半径外端且垂直于半径的直线是线;
两个条件:过半径外端且垂直半径,二者缺一不可即:
(2)性质定理:切线垂直于过切点的半径(如上图)
推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:即:
①过圆心;
②过切点;
③垂直切线,三个条件中知道其中两个条件就能推出最后一个。
10、切线长定理:
切线长定理:
从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:
11、两圆公共弦定理:
圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。
12、圆内正多边形的计算
(1)正三角形 :
13、扇形、圆柱和圆锥的相关计算公式
(1)扇形:
(2)圆锥侧面展开图
(3)圆锥与圆柱的比较