其他
【063】可复制的因子研究
这是因子动物园的第 63 篇独立原创研究。
1. 低波动异象
2. 金融研究的可复制性
基于原始数据对原文进行严格的复制; 基于拓展的样本对原文进行样本外检验; 将原文放在一个更大的框架(broader context)下进行分析,帮助读者更好地理解原文的价值,以及对未来研究的启发。
3. 因子研究的可复制性
首先,同其他领域一样,可复制性可以确保后续研究有良好的基础,而不至于在错误的问题上越陷越深,同时,也可以帮助研究者更好地理解已有研究结论是如何得到的。 其次,因子研究的方法、流程相对标准化,在相当程度上,不同研究者重复造轮子的工作,是一种巨大的浪费。
4. 结语
Ang, Andrew, Robert J. Hodrick, Yuhang Xing, and Xiaoyan Zhang. "The cross‐section of volatility and expected returns." Journal of Finance 61.1 (2006): 259-299. Chen, Andrew Y., and Tom Zimmermann. "Open source cross-sectional asset pricing." Available at SSRN (2020). Chen, Andrew Y., and Tom Zimmermann. "Publication bias and the cross-section of stock returns." Review of Asset Pricing Studies 10.2 (2020): 249-289. Fu, Fangjian. "Idiosyncratic risk and the cross-section of expected stock returns." Journal of Financial Economics 91.1 (2009): 24-37. Green, Jeremiah, John RM Hand, and X. Frank Zhang. "The characteristics that provide independent information about average us monthly stock returns." Review of Financial Studies 30.12 (2017): 4389-4436. Harvey, Campbell R. "Replication in Financial Economics." Available at SSRN 3409466 (2019). Harvey, Campbell R., Yan Liu, and Heqing Zhu. "… and the cross-section of expected returns." Review of Financial Studies 29.1 (2016): 5-68. Hou, Kewei, Chen Xue, and Lu Zhang. "Replicating anomalies." Review of Financial Studies 33.5 (2020): 2019-2133. Linnainmaa, Juhani T., and Michael R. Roberts. "The history of the cross-section of stock returns." Review of Financial Studies 31.7 (2018): 2606-2649. McLean, R. David, and Jeffrey Pontiff. "Does academic research destroy stock return predictability?." Journal of Finance 71.1 (2016): 5-32.