查看原文
其他

奥地利格拉茨技术大学Chegini等 | 交互式可视化标注与主动学习:实验比较

Chegini,等 信息与电子工程前沿FITEE 2022-10-01


内容介绍


中文摘要:

监督式机器学习方法可自动分类新数据,且对数据分析非常有帮助。监督式机器学习的质量不仅依赖于使用的算法类型,也依赖于用于训练分类器的标注数据集的质量。训练数据集中的标注实例通常依赖于专业分析人员的手工选择与注释,且通常是一个单调与耗时的过程。标签可以在学习过程中为主动学习算法提供有用的输入,以自动确定数据实例的子集。交互式可视化标注技术是有前景的选择,它提供有效的视觉概览,分析人员可从中同时查看数据记录与选择项目标签。将分析人员置于循环中,生成的分类器可得到更高准确率。虽然交互式可视化标注技术的初步结果在某种意义上有前景的,考虑到用户标注可改善监督式学习,但是该技术的许多方面仍有待探索。本文使用mVis工具标注一个多元数据集以比较3种交互式可视化技术(相似图、散点矩阵与平行坐标图)以及主动学习。结果表明3种交互式可视化标注技术的分类准确率均高于主动学习算法,相对于散点矩阵与平行坐标图,用户主观上更偏爱使用相似图标注。用户也可以根据使用的可视化技术采用不同标注策略。


关键词:

交互式可视化标注;主动学习;可视分析
作者:
Mohammad CHEGINI1,2,Jürgen BERNARD3,Jian CUI2,Fatemeh CHEGINI4,Alexei SOURIN2,Keith ANDREWS5,Tobias SCHRECK1

  

单位:

1格拉茨技术大学计算机图形与知识可视化研究所,奥地利格拉茨,8010
2南洋理工大学计算机科学与工程学院,新加坡,639798
3英属哥伦比亚大学信息可视化研究组,加拿大温哥华,V6T1Z4
4马克斯-普朗克气象研究所,德国汉堡,20146
5格拉茨技术大学互动系统与数据科学研究所,奥地利格拉茨,8010

本文引用格式:

Mohammad Chegini, Jürgen Bernard, Jian Cui, Fatemeh Chegini, Alexei Sourin, Keith Andrews, Tobias Schreck. Interactive visual labelling versus active learning: an experimental comparison[J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21(4): 524-535. https://doi.org/10.1631/FITEE.1900549


本文精要导读:

Mohammad CHEGINI is now a researcher at Technische Universität Graz. In 2017, he enrolled in a joint PhD program between Technische Universität Graz in Austria and Nanyang Technological University in Singapore. He got his information technology bachelor and master from the Sharif University of Technology and the University of Tehran, respectively. His research interests are visual analytics, human–computer interaction, and interaction with novel devices. Before starting his research career, he was a co-founder of a video game company.


点击下方“阅读全文”,下载全文PDF




关于本刊

Frontiers of Information Technology & Electronic Engineering(简称FITEE,中文名《信息与电子工程前沿(英文)》,ISSN 2095-9184,CN 33-1389/TP)是信息电子类综合性英文学术月刊,SCI-E、EI收录,最新影响因子1.033。前身为2010年创办的《浙江大学学报英文版C辑:计算机与电子》,2015年更为现名,现为中国工程院信息与电子工程学部唯一院刊。覆盖计算机、信息与通信、控制、电子、光学等领域。文章类型包括研究论文、综述、个人视点、评述等。现任主编为中国工程院院士潘云鹤、卢锡城,实行国际同行评审制,初次转达意见一般在2~3个月内。文章一经录用将快速在线。


FITEE官网http://www.jzus.zju.edu.cn

期刊Springer主页:

http://www.springer.com/computer/journal/11714

在线投稿地址:

http://www.editorialmanager.com/zusc


微信加群
为方便广大科研人员交流讨论,本平台建有以下学科微信群。有需要加群的用户,请加小编个人微信号fitee_xb,并留言想要加入的群,小编会拉您进群。营销广告人员请勿扰。

计算机科学与技术学术群

光学工程与技术学术群

控制科学与技术学术群

信息与通信学术群

电力电子学术群

人工智能学术


加关注  ID: fitee_cae

本公众号为中国工程院院刊《信息与电子工程前沿(英文)》(SCI-E、EI检索期刊)官方微信,功能包括:传播期刊的学术文章;为刊物关联学人(读者、作者、评审人、编委,等)提供便捷服务;发布学术写作、评审、编辑、出版等相关资讯;介绍信息与电子工程领域学术人物、学术思想、学术成果,展示该领域科学研究前沿进展;为该领域海内外学者提供友好互动平台。

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存