查看原文
其他

华东师范大学朱思涵等 | 自监督脓毒症治疗推荐算法

朱思涵,浦剑 信息与电子工程前沿FITEE 2022-10-01

内容介绍


中文摘要:

由于每个脓毒症患者治疗反应可能不同,为病人提供量身定制的治疗建议来帮助医生有效、准确地做出决定,并采取有效治疗方案,是降低医院重症监护病房死亡率的一项极具挑战性的工作。本文将强化学习应用于个人治疗推荐,采用对样本不确定性进行建模并评估的方法,根据患者对治疗的反应和状态,将患者样本分为两个域,然后使用辅助迁移学习任务重建两个域的样本,使用特权学习的蒸馏方法与用于迁移学习的变分自动编码器框架关联低质量域和高质量域间的任务。通过结合自监督方式获得更好的状态和动作表示,本文提出一种针对引起较高风险的不确定性进行控制的深度强化学习方法;模型提供一定的灵活性使之可以在不同场景对模糊样本做出保守预测或明确判断,并降低预期死亡率。在大规模公开可用的真实医疗数据集MIMIC-III上的实验表明,所提模型将总体估计死亡率降低了2.3%,并将主要估计死亡率降低到9.5%。
关键词:治疗推荐;脓毒症;自监督学习;强化学习;电子病历
作者:

朱思涵1,浦剑2


单位:

1华东师范大学计算机科学与技术学院,中国上海市,200062
2复旦大学类脑智能科学与技术研究院,中国上海市,200433

本文引用格式:
Sihan ZHU, Jian PU, 2021. A self-supervised method for treatment recommendation in sepsis. Frontiers of Information Technology & Electronic Engineering, 22(7):926-939.https://doi.org/10.1631/FITEE.2000127


本文精要导读:

点击下方“阅读全文”,下载全文PDF





关于本刊


Frontiers of Information Technology & Electronic Engineering(简称FITEE,中文名《信息与电子工程前沿(英文)》,ISSN 2095-9184,CN 33-1389/TP)是信息电子类综合性英文学术月刊,SCI-E、EI收录,最新影响因子2.161,位于JCR Q2分区。前身为2010年创办的《浙江大学学报英文版C辑:计算机与电子》,2015年更为现名,现为中国工程院信息与电子工程学部唯一院刊。覆盖计算机、信息与通信、控制、电子、光学等领域。文章类型包括研究论文、综述、个人视点、评述等。现任主编为中国工程院院士潘云鹤、卢锡城。实行国际同行评审制,初次转达意见一般在2~3个月内。文章一经录用将快速在线。

2019年,荣获中国科协等七部委推出的中国科技期刊卓越行动计划项目资助(梯队期刊)。


官网http://www.jzus.zju.edu.cn

期刊Springer主页

http://www.springer.com/computer/journal/11714

在线投稿

http://www.editorialmanager.com/zusc


更多信息,请见:

2021最新影响因子公布 FITEE首次突破2.0

FITEE影响因子提升55%,首次跨入Q2区

微信加群

为方便广大科研人员交流讨论,本平台建有以下学科微信群。有需要加群的用户,请加小编个人微信号fitee_xb,并留言想要加入的群,小编会拉您进群。营销广告人员请勿扰。

计算机科学与技术学术群

光学工程与技术学术群

控制科学与技术学术群

信息与通信学术群

电力电子学术群

人工智能学术


加关注  ID: fitee_cae

本公众号为中国工程院院刊《信息与电子工程前沿(英文)》(SCI-E、EI检索期刊)官方微信,功能包括:传播期刊的学术文章;为刊物关联学人(读者、作者、评审人、编委,等)提供便捷服务;发布学术写作、评审、编辑、出版等相关资讯;介绍信息与电子工程领域学术人物、学术思想、学术成果,展示该领域科学研究前沿进展;为该领域海内外学者提供友好互动平台。

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存