人教版四年级数学下册全册知识点梳理+视频精讲
知识点
(一)四则运算:
1、 运算顺序:1、在没有括号的算式里,如果只有加减法或只有乘除法,都要从左往右按顺序(依次)计算。
2、在没有括号的算式里,有加减法又有乘除法,要先算乘除法,后算加减法。
3、算式里有括号时,要先算括号里面的。
2、 加法、减法、乘法和除法统称为四则运算。
3、 有关0的运算:1、一个数加上0得原数。
2、任何一个数乘0得0。
3、0不能做除数。0除以一个非0的数等于0。
0÷0得不到固定的商;5÷0得不到商.
(二) 观察物体(二)
1、正确辨认从上面、前面、左面观察到物体的形状并会画图。
2、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。从不同的位置观察,才能更全面地认识一个物体。
3、站在任意一个位置,最多只能看到物体的3个面,至少能看到1个面。从一个或两个方向看到的图形是不能确定立体图形的形状的。
4、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。
(三) 运算定律:
1、加法运算定律:1、加法交换律:两个数相加,交换加数的位置,和不变。
a+b=b+a
2、加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。(a+b)+c=a+(b+c)
加法的这两个定律往往结合起来一起使用。
如:165+93+35=93+(165+35)依据是什么?
2、连减的性质:一个数连续减去两个数,等于这个数减去那两个数的和。
a-b-c=a-(b+c)
3、乘法运算定律:1、乘法交换律:两个数相乘,交换因数的位置,积不变。
a × b = b × a
2、乘法结合律:三个数相乘,可以先把前两个数相乘,再乘以第三个数,也可以先把后两个数相乘,再乘以第一个数,积不变。
( a × b)× c = a × ( b × c )
乘法的这两个定律往往结合起来一起使用。
如:125×78×8的简算
3、乘法分配律:两个数的和与一个数相乘,可以先把这两个数分别与这两个数相乘,再把积相加。(a+b)×c=a×c+b×c
4、连除的性质:一个数连续除以两个数,等于除以这两个数的积。
a÷ b÷ c = a÷ ( b× c)
5、有关简算的拓展:
102×38-38×2 125×25×32 125×88
3.25+1.98 10.32-1.98 37×96+37×3+37
易错的情况:0.6+0.4-0.6+0.4 38×99+99
(四) 小数的意义和性质:
1、分母是10、100、1000……的分数可以用小数来表示。
2、小数是十进制分数的另一种表现形式。
3、小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
4、每相邻两个计数单位间的进率是10。
5、小数的读写法:读法:整数部分按照整数读法来读,小数部分要顺次读出每一个数。
写法:整数部分按照整数的写法来写,整数部分是0就写0,小数部分依次写出每一个数。
6.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。注意:小数中间的“0”不能去掉,取近似数时有一些末尾的“0”不能去掉。作用可以化简小数等。
7.小数大小比较:先比较整数部分,整数部分相同比较十分位,十分位相同比较百分位,……
8.小数点位置移动引起小数大小变化规律:
小数点向右:移动一位,小数就扩大到原数的10倍;
移动两位,小数就扩大到原数的100倍;
移动三位,小数就扩大到原数的1000倍;
……
小数点向左:移动一位,小数就缩小10倍,(小数就缩小为原数的 );
移动两位,小数就缩小100倍,(小数就缩小为原数的 );
移动三位,小数就缩小1000倍,(小数就缩小为原数的 );
……
9.名数的改写:1吨30千克+800克=( )吨
长度单位:千米———— 米 ———— 分米 ———— 厘米
面积单位:平方千米———公顷———平方米————平方分米———平方厘米
质量单位:吨————千克————克
10、求小数的近似数(四舍五入):(保留两位小数与精确到百分位的提法)
保留整数,表示精确到个位,保留一位小数,表示精确到十分位,保留两位小数,表示精确到百分位,取近似数时,小数末尾的0不能去掉。
大数的改写。先改写,再求近似数。注意:带上单位。
(五) 三角形:
1、三角形的定义:由三条线段围成的图形(每相邻两条线段的端点相连或重合),叫三角形。
2、从三角形的一个顶点到它的对边做一条垂线,顶点和垂足间的线段叫做三角形的高,这条对边叫做三角形的底。重点:三角形高的画法。
3、三角形的特性:1、物理特性:稳定性。如:自行车的三角架,电线杆上的三角架。
2、边的特性:任意两边之和大于第三边。
4、三角形的分类:
按照角大小来分:锐角三角形,直角三角形,钝角三角形。
按照边长短来分:三边不等的△,等腰△(等边三角形或正三角形是特殊的等腰△)。
等边△的三边相等,每个角是60度。(顶角、底角、腰、底的概念)
5、三角形的内角和等于180度。有关度数的计算以及格式。
6、图形的拼组:两个完全一样的三角形一定能拼成一个平行四边形。
7、密铺:可以进行密铺的图形有长方形、正方形、三角形以及正六边形等。
(六)小数的加法和减法:
1、 计算法则:相同数位对齐(小数点对齐),按照整数计算方法进行计算,得数的小数点要和横线上的小数的小数点对齐。结果是小数的要依据小数的性质进行化简。
2、 竖式计算以及验算。注意横式上要写上答案,不要写成验算的结果。
3、 整数的四则运算顺序和运算定律在小数中同样适用。(简算)
(七) 图形的运动(二)
一、轴对称
1、把一个图形沿着某一条直线对折,对折后直线两侧的部分完全重合,这样的图形就是轴对称图形。折痕所在的直线是图形的对称轴。(对称轴是一条直线,所以在画对称轴时,要画到图形外面,且要用虚线。)
2、轴对称图形的特征:对折后,对称轴两侧能够完全重合。
3、轴对称和轴对称图形都是关于某条直线对称,轴对称是指2个图形,轴对称图形是指1个图形的两部分。
4、在轴对称图形的中,对称轴两侧的对应点到对称轴的距离相等。
5、画简单轴对称图形的方法
①找出已知图形的几个关键点
②然后根据各个对称点到对称轴的距离相等的特点,在对称轴的另一侧找出关键点的对称点
③最后按照已知图形的形状顺序连接各对称点,就画出了所有图形的另一半
6、判断一个图形是否是轴对称图形的方法
把这个图形沿某条直线对折,看折痕两侧的图形能否完全重合,能够重合的图形就是轴对称图形,不能完全重合的图形就不是轴对称图形。
7、会画已知图形的对称轴,例如长方形、正方形、圆形、三角形等。
8、轴对称图形的对称轴有的只有一条,有的则存在多条。
长方形有2条对称轴,正方形有4条对称轴,等腰梯形有1条对称轴,等腰三角形有一条对称轴,等边三角形有3条对称轴,线段有1条对称轴,菱形有2条对称轴,圆有无数条对称轴,半圆有一条,圆环有无数条,半圆环有一条。
二、平移:
1.概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。(平移现象,例如:缆车、观光梯、推拉门等)
2.性质
(1)平移前后图形全等;
(2)对应点连线平行或在同一直线上且相等。
3.平移的作图步骤和方法:
(1)确定平移的方向和平移的距离
(2)找出构成图形的对应点
(3)沿一定的方向,按一定的距离平移各个对应点
(4)连接所作的各个对应点,并标上相应的字母
(八)平均数与条形统计图
一、平均数:
1、能较好地反映一组数据的总体情况,而不能代表其中某个个体的情况。它表示统计对象的一般水平。 2、它比一组数据中最大的数要小,比最小的数要大。
3、求平均数的计算方法:总数量÷总份数=平均数
4、平均分:平均数和平均分不一样,是两个不同的概念。比赛时,计算平均得分时,一般要去掉一个最高分和一个最低分。
二、复式条形统计图:
1、用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直线按照一定的顺序排列起来。
2、复式条形统计图根据直条的方向可以分为横向复式条形统计图和纵向复式条形统计图。
3、优点:直观地反映数量的多少。
4、画图注意:
①画条形统计图时,直条的宽窄必须相同。取一个单位长度表示数量的多少要根据具体情况而确定; ②复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区别开。
③按照数据的大小画出长短不同的直条,并注明数量。
④ 必须要有图例。
(九)数学广角──鸡兔同笼。
一、“鸡兔同笼”问题的解题方法
1、猜测、列表的方法
先从鸡是8只,兔是0只开始猜测,鸡的只数每次减少1只,兔的只数就相应地增加1只,保证鸡兔的只数和是8只,一直猜到鸡兔的脚数和是26只为止。
数据量较大时,解题过程就很繁琐。
2、假设的方法
①假设笼子里全是鸡
兔的只数=(实际脚数-2鸡兔的总只数)(4-2) 鸡的只数=鸡兔的总只数-兔的只数
②假设笼子里全是兔
鸡的只数=(4鸡兔的总只数-实际脚数)(4-2) 兔的只数=鸡兔的总只数-鸡的只数
3、方程法 鸡的只数2+兔的只数4=鸡兔的总脚数
二、“鸡兔同笼”问题解法的应用
当题中所给数据较大时,不易采用猜测、列表方法,用假设的方法或方程法解决问题较简便。
视频精讲
1-3单元知识精讲
4-5单元知识精讲
6-10单元知识精讲
声明:本公众号尊重原创,素材来源于网络,好的内容值得分享,如有侵权请联系删除。