人教版五年级数学下册全册知识点梳理+视频精讲
知识点
第一单元 观察物体(三)
1.从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置观察最多能看到3个面。
2.正面、侧面、后面都是相对的,它是随着观察角度的变化而变化。
3.观察物体,先要确定观察的方向(上、正、左、右),再确定观察的形状,并把它画下来。
4.摆立体图形时,可根据从正面看到的平面图形摆出底层,再根据从正面看出的摆出前排的图形,然后根据从左面看对后排进行订正,最后从不同方向观察所摆图形是否符合原图形。
5.数正方体的个数时,为了既不遗漏又不重复,可分层数;观察漏在外面的面,应弄清从哪几个方向看到的是什么图形,再计算。
第二单元 因数和倍数
1、整除:被除数、除数和商都是自然数,并且没有余数。
整数与自然数的关系:整数包括自然数。
2、因数、倍数:大数能被小数整除时,大数是小数的倍数,小数是大数的因数。
例:12是6的倍数,6是12的因数。
(1)数a能被b整除,那么a就是b的倍数,b就是a的因数。
因数和倍数是相互依存的,不能单独存在。
(2)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的因数的求法:成对地按顺序找。
(3)一个数的倍数的个数是无限的,最小的倍数是它本身。
一个数的倍数的求法:依次乘以自然数。
(4)2、3、5的倍数特征
1) 个位上是0,2,4,6,8的数都是2的倍数。
2)一个数各位上的数的和是3的倍数,这个数就是3的倍数。
3)个位上是0或5的数,是5的倍数。
4)能同时被2、3、5整除(也就是2、3、5的倍数)的最大的两位数是90,最小的三位数是120。
同时满足2、3、5的倍数,实际是求2×3×5=30的倍数。
5)如果一个数同时是2和5的倍数,那它的个位上的数字一定是0。
3、完全数:除了它本身以外所有的因数的和等于它本身的数叫做完全数。
如:6的因数有:1、2、3(6除外),刚好1+2+3=6,所以6是完全数,小的完全数有6、28等
4:自然数按能不能被2整除来分:奇数、偶数。
奇数:不能被2整除的数。叫奇数。也就是个位上是1、3、5、7、9的数。
偶数:能被2整除的数叫偶数(0也是偶数),也就是个位上是0、2、4、6、8的数。
最小的奇数是1,最小的偶数是0.
关系:奇数+、- 偶数=奇数
奇数+、- 奇数=偶数
偶数+、-偶数=偶数。
5、自然数按因数的个数来分:质数、合数、1、0四类.
质数(或素数):只有1和它本身两个因数。
合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
1: 只有1个因数。“1”既不是质数,也不是合数。
最小的质数是2,最小的合数是4,连续的两个质数是2、3。
每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
20以内的质数:有8个(2、3、5、7、11、13、17、19)
100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97
100以内找质数、合数的技巧:
看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
关系:奇数×奇数=奇数
质数×质数=合数
6、最大、最小
A的最小因数是:1;
A的最大因数是:A;
A的最小倍数是:A;
最小的自然数是:0;
最小的奇数是:1;
最小的偶数是:0;
最小的质数是:2;
最小的合数是:4;
7、分解质因数:把一个合数分解成多个质数相乘的形式。
用短除法分解质因数 (一个合数写成几个质数相乘的形式)。比如:30分解质因数是:(30=2×3×5)
8、互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7
两个合数的互质数:8和9
一质一合的互质数:7和8
两数互质的特殊情况:
⑴1和任何自然数互质;
⑵相邻两个自然数互质;
⑶两个质数一定互质;
⑷2和所有奇数互质;
⑸质数与比它小的合数互质;
9、公因数、最大公因数
几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。
用短除法求两个数或三个数的最大公因数 (除到互质为止,把所有的除数连乘起来)
几个数的公因数只有1,就说这几个数互质。
如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
如果两数互质时,那么1就是它们的最大公因数。
10、公倍数、最小公倍数
几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)
用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)
如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
11、求最大公因数和最小公倍数方法
用12和16来举例
1、求法一:(列举求同法)
最大公因数的求法:
12的因数有:1、12、2、6、3、4
16的因数有:1、16、2、8、4
最大公因数是4
最小公倍数的求法:
12的倍数有:12、24、36、48、…
16的倍数有:16、32、48、…
最小公倍数是48
2、求法二:(分解质因数法)
12=2×2×3
16=2×2×2×2
最大公因数是:
2×2=4(相同乘)
最小公倍数是:
2×2×3×2×2= 48(相同乘×不同乘)
第三单元 长方体和正方体
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:
(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:
(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相 同 点 | 不同点 | ||
面 | 棱 | ||
长方体 | 都有6个面,12条棱,8个顶点。 | 6个面都是长方形。 (有可能有两个相对的面是正方形)。 | 相对的棱的长度都相等 |
正方体 | 6个面都是正方形。 | 12条棱都相等。 |
3、长方体、正方体有关棱长计算公式:
长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4
L=(a+b+h)×4
长=棱长总和÷4-宽 -高
a=L÷4-b-h
宽=棱长总和÷4-长 -高
b=L÷4-a-h
高=棱长总和÷4-长 -宽
h=L÷4-a-b
正方体的棱长总和=棱长×12
L=a×12
正方体的棱长=棱长总和÷12
a=L÷12
4、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
无底(或无盖)
长方体表面积= 长×宽+(长×高+宽×高)×2
S=2(ab+ah+bh)-ab
S=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2
S=2(ah+bh)
贴墙纸
正方体的表面积=棱长×棱长×6 S=a×a×6 用字母表示:S= 6a2
生活实际:
油箱、罐头盒等都是6个面
游泳池、鱼缸等都只有5个面
水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)
注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
5、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高 V=abh
长=体积÷宽÷高 a=V÷b÷h
宽=体积÷长÷高 b=V÷a÷h
高=体积÷长÷宽 h= V÷a÷b
正方体的体积=棱长×棱长×棱长 V=a×a×a = a3
读作“a的立方”表示3个a相乘,(即a·a·a)。
长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高
用字母表示:V=S h(横截面积相当于底面积,长相当于高)。
注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
6、箱子、油桶、仓库等所能容纳物体的体积,通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积,如水、油等。
常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米
1毫升=1立方厘米
1升=1000毫升
(1L = 1dm3 1ml = 1cm3)
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)
注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
排水法的公式:
V物体 =V现在-V原来
也可以 V物体 =S×(h现在- h原来) V物体 =S×h升高
8、【体积单位换算】
大单位×进率=小单位
小单位÷进率=大单位
进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)
1立方分米=1000立方厘米=1升=1000毫升
1立方厘米=1毫升
1平方米=100平方分米=10000平方厘米
1平方千米=100公顷=1000000平方米
注意:长方体与正方体关系
把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
重量单位进率,时间单位进率,长度单位进率
大单位×进率=小单位
小单位÷进率=大单位
长度单位:
1千米 =1000 米 1 分米=10 厘米
1厘米=10毫米 1分米=100毫米
1米=10分米=100厘米=1000毫米
(相邻单位进率10)
面积单位:
1平方千米=100公顷 1平方米=100平方分米
1平方分米=100平方厘米 1公顷=10000平方米
(平方相邻单位进率100)
质量单位:
1吨=1000千克 1千克=1000克
人民币:
1元=10角 1角=10分 1元=100分
第四单元 分数的意义和性质
1、分数的意义:一个物体、一物体等都可以看作一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。
2、单位“1”:一个整体可以用自然数1来表示,通常把它叫做单位“1”。(也就是把什么平均分什么就是单位“1”。)
3、分数单位:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。如4/5的分数单位是1/5。
4、分数与除法
A÷B=A/B(B≠0,除数不能为0,分母也不能够为0) 例如:4÷5=4/5
5、真分数和假分数、带分数
1、真分数:分子比分母小的分数叫真分数。真分数<1。
2、假分数:分子比分母大或分子和分母相等的分数叫假分数。假分数≧1
3、带分数:带分数由整数和真分数组成的分数。带分数>1.
4、真分数<1≤假分数
真分数<1<带分数
6、假分数与整数、带分数的互化
(1)假分数化为整数或带分数,用分子÷分母,商作为整数,余数作为分子。如:
(2)整数化为假分数,用整数乘以分母得分子。 如:
(3)带分数化为假分数,用整数乘以分母加分子,得数就是假分数的分子,分母不变,如:
(4)1等于任何分子和分母相同的分数。如:
7、分数的基本性质:
分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。
8、最简分数:分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。
9、约分:把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。如:24/30=4/5
10、通分:把异分母分数分别化成和原来相等的同分母分数,叫做通分。
如:2/5和1/4 可以化成8/20和5/20
11、分数和小数的互化
(1)小数化为分数:数小数位数。一位小数,分母是10;两位小数,分母是100……
如:
0.3=3/10 0.03=3/100 0.003=3/1000
(2)分数化为小数:
方法一:把分数化为分母是10、100、1000……
如:3/10=0.3 3/5=6/10=0.6
1/4=25/100=0.25
方法二:用分子÷分母
如:3/4=3÷4=0.75
(3)带分数化为小数:
先把整数后的分数化为小数,再加上整数
12、比分数的大小:
分母相同,分子大,分数就大;分子相同,分母小,分数才大。
分数比较大小的一般方法:同分子比较;通分后比较;化成小数比较。
13、分数化简包括两步:一是约分;二是把假分数化成整数或带分数。
1/2=0.5 1/4=0.25 3/4=0.75
1/5=0.2 2/5=0.4 3/5=0.6
4/5=0.8 1/8=0.125 3/8=0.375
5/8=0.625 7/8=0.875 1/20=0.05
14、两个数互质的特殊判断方法:
① 1和任何大于1的自然数互质。
② 2和任何奇数都是互质数。
③ 相邻的两个自然数是互质数。
④ 相邻的两个奇数互质。
⑤ 不相同的两个质数互质。
⑥当一个数是合数,另一个数是质数时(除了合数是质数的倍数情况下),一般情况下这两个数也都是互质数。
15、求最大公因数的方法:
① 倍数关系:最大公因数就是较小数。
② 互质关系:最大公因数就是1
③ 一般关系:从大到小看较小数的因数是否是较大数的因数。
16、分数知识图解:
第五单元 图形的运动(三)
1.轴对称:把一个图形沿着某一条直线对折,如果它能够与另一个图形完全重合,那么就说这两个图形成轴对称;这条直线就是对称轴。两个图形完全重合时的点叫做对应点;互相重合的角叫做对应角,互相重合的线段叫做对应线段。
2.轴对称的性质:对应点到轴对称的距离相等。
轴对称的特征:沿对称轴对折,对应点、对应线段、对应角重合。
3.旋转:物体绕着某一点运动,这种运动叫做旋转。
4.钟表中指针的运动方向成顺时针旋转,反之,称之为逆时针旋转。
5.图形旋转的性质:图形绕着某一点旋转一定的度数,图形中的对应点、对应线段都旋转相应的度数,相对应的点到旋转点的距离相等,对应角相等。
注意:图形旋转后,形状、大小都没有发生变化,只是位置变了。
第六单元 分数的加法和减法
1、分数数的加法和减法
(1) 同分母分数加、减法 (分母不变,分子相加减)
(2) 异分母分数加、减法 (通分后再加减)
(3) 分数加减混合运算:同整数。
(4) 结果要是最简分数
2、带分数加减法:
带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。
(一)同分母分数加、减法
1、同分母分数加、减法:
同分母分数相加、减,分母不变,只把分子相加减。
2、计算的结果,能约分的要约成最简分数。
(二)异分母分数加、减法
1、分母不同,也就是分数单位不同,不能直接相加、减。
2、异分母分数的加减法:
异分母分数相加、减,要先通分,再按照同分母分数加减法的方法进行计算。
(三)分数加减混合运算
1、分数加减混合运算的运算顺序与整数加减混合运算的顺序相同。
在一个算式中,如果有括号,应先算括号里面的,再算括号外面的;如果只含有同一级运算,应从左到右依次计算。
2、整数加法的交换律、结合律对分数加法同样适用。
4、 打电话:
规律:人人不闲着,每人都在传。(技巧:已知人数依次 × 2)
(1)逐个法:所需时间最多。
(2)分组法:相对节约时间。
(3)同时进行法:最节约时间。
第七单元 折线统计图
1.折线统计图:以折线的上升或下降来表示统计数量的增减变化的统计图。
2.特点:折线变化幅度越大,数量关系变化越大。
易于显示数据变化趋势以及变化幅度,可以直观地反映这种变化以及各组之间的差别。
注意:折线统计图常用来检测股市的跌涨和统计气温。
3.制作折线统计图的步骤:
² 根据统计资料整理数据
² 先画横轴,后画纵轴,纵、横轴都要有单位,按纸面的大小来确定一定单位表示一定的数量。
² 根据数量的多少,在纵、横轴的恰当位置描出各点,然后把各点用线段顺次连接起来。
4.人口自然增长数:出生人口数和死亡人口数之差。
第八单元 数学广角——找次品
1.在找次品的方法和原则:一是把待分的物品分成3份;二是要分得尽量平均,能够平均分的平均分成3份,不能平均分的,也应使多的与少的一份只差1.
知识精讲
1-2单元知识精讲
3单元知识精讲
4-8单元知识精讲