其他
一道错误答案传遍全网的逻辑面试题
The following article is from 小K算法 Author 小K算法
来源丨经授权转自公众号 小K算法(ID:xiaok365)
答对三道题或三道题以上的人算及格,那么在这100人中至少有多少人及格呢?
02思考小规模,AB两题先考虑如果只有AB两道题,100个人,第一反应是用集合的方式。
可以得到如下结论:
同时做对AB两题的最少有72人,最多有81人 同时做错AB两题的最多有9人,最少有0人
03扩大规模,ABC三题先考虑每两题之间的关系。
04切换思维上面都是正向思维,但不好处理,可以逆向思维。
Wait,总感觉有点怪怪的,倒不是因为太简单,而是对于信息量的直觉告诉我,这种解法忽略了很多的信息量。只用了总数,而没有用到5道题的错题数量分布。那就直接告诉你总共错了90道就行了,为啥还要单独告诉具体的数量,这难道真的只是误导信息吗?
05
极限法思维
根据上面的解法,既然不关心具体分布,那就用极限思维,构造特殊数据。比如所有错题集中在A题。先不跟你扯,咱们进一步思考,这个反例说明了一点:错题不能随意均摊,那就从这点下手。
06错题均摊先看错误的分布。
第一种分配:
将A,B,C分配给7人 将C,D,E分配给2人 将B,D,E分配给1人
将错题从大到小排序 每次将最大的前3个分配给一人,然后重新排序
07抽象转换问题:有5个矩形,顺序可随意。要切出宽度为3的N个矩形,要求总体叠加要尽量的高,最高有多少?
你品,你细品,这是不是同一个问题呀。所以要从最高的前3个开始一点一点的削它,哈哈。
08真相浮出水面回到原题,那到底至少有多少人呢?通过代码测试结果。
int a[5], ans = 0;
for (int i = 0; i < 5; ++i) {
cin >> a[i];
}
sort(a, a + 5, compare);
while (a[2] > 0) {
a[0]--;
a[1]--;
a[2]--;
sort(a, a + 5, compare);
ans++;
for (int i = 0; i < 5; ++i) {
cout << a[i] << " ";
}
cout << endl;
}
cout << "ans=" << ans << endl;
return 0;
}
24 19 17 15 9
23 18 16 15 9
22 17 15 15 9
21 16 15 14 9
20 15 14 14 9
19 14 14 13 9
18 13 13 13 9
17 13 12 12 9
16 12 12 11 9
15 11 11 11 9
14 11 10 10 9
13 10 10 9 9
12 9 9 9 9
11 9 9 8 8
10 8 8 8 8
9 8 8 7 7
8 7 7 7 7
7 7 7 6 6
6 6 6 6 6
6 6 5 5 5
5 5 5 5 4
5 4 4 4 4
4 4 4 3 3
3 3 3 3 3
3 3 2 2 2
2 2 2 2 1
2 1 1 1 1
1 1 1 0 0
0 0 0 0 0
ans=30
09总结看似简单的问题,也要多深入思考,说不定你会发现不一样的结论。而且也别轻易相信别人的分析,这个问题网上90%都是错的,大家也可以看一下我的分析是否严谨,如果有问题也请及时反馈给我哈,谢谢啦。
如果喜欢小K的文章,请点个关注,分享给更多的人,小K将持续更新,谢谢啦!
1、写了四十篇办公自动化文章后,我整理了这十个常用操作,代码拿走就用!
识别关注我们
了解更多精彩内容
点分享
点点赞
点在看