数据呈现丨经济学家的数据可视化指南
数据seminar每天18:00与您准时见面!
本文来源:Schwabish, Jonathan A. "An economist's guide to visualizing data." Journal of Economic Perspectives 28.1 (2014): 209-34.
英文标题:An Economist’s Guide to Visualizing Data
中文标题:经济学家的数据可视化指南
作者:Jonathan A. Schwabish
翻译:陈煌杰
一、摘要和引言
众所周知,“一图胜千言”。随着网络报纸、博客和社交媒体快速发展,精美的图片已经成为传递信息的重要媒介;同样对于经济学家而言,具有说服力并能够提高读者阅读效率的数据图表亦是研究报告中不可缺少的重要角色。
二、基础图形介绍与改进
糟糕的图形不但让读者无法领会作者想要表达的信息,还会造成读者对数据的解读偏差。本节介绍了几种基础的数据可视化图形,并使用上述的三个原则对一些案例进行了改进。当然,有些修改是主观的,例如,线条的粗细、顺序、坐标轴标签的样式等,但还有些修改确实在客观上提高了图表的表现力。所有的改进图都是在Excel中绘制的,作图过程中使用了Garamond字体是为了稍微区别于Journal of Economic Perspectives(本文发表的期刊,以下简称JEP)的Baskerville字体,电子版的JEP支持彩色图形,色彩在数据可视化中是一个重要的工具,不但可以唤起读者情感、强调图形元素,还可以增加图形美感。印刷版的JEP不使用彩色图形,所有在JEP电子版中使用彩色的图表都将转为黑白图表。本文作图时的色调选择也是主观的,但遵循了一些基本的准则。在”工具和资源“那一小节,我会重点介绍一些有助于数据可视化的工具。
(一)折线图
(二)散点图
(三)柱状图
(四)3D图形
(五)非平衡图
(六)多线图
(七)饼图
三、数据可视化的形式与功能
CBO,Federal Means-Tested Transfer Programs:
www.cbo.gov/publication/43935
Moritz Stefaner,Müsli Ingredient Network:
http://archive.stefaner.eu/projects/musli-ingredient-network
World Bank,Economic Policy & External Debt:
https://data.worldbank.org/topic/economy-and-growth
OECD,Better Life Index:
http://www.oecdbetterlifeindex.org/
四、工具和资源
统计软件可以生成基础的静态图表,但我们需要采取一些措施来改善图表的表现效果,例如,修改默认的布局、网格线、颜色和字体等。下面的讨论并不全面,所提及的特定产品也不一定完美,但可以作为数据可视化的起点。更具体的工具清单可以在我的个人网站中查找(https://policyviz.com/books/better-presentations/)。用好一些免费的工具,不但可以帮助我们在数据分析时更好地利用数据,还可以帮助我们准备演讲和设计出版物。
(一)颜色
(二)字体
(三)可视化工具
(四)布局
(五)绘制地图
(六)绘制信息图
(七)资源
Eagereyes(eagereyes.org)由Robert Kosara制作,他是Tableau软件公司的视觉分析研究员,也是UNC-Charlotte的前计算机科学教授,他经常写一些关于数据和信息可视化的研究方面的文章; Flowing Data(flowdata.com)由作者兼统计学家的Nathan Yau制作,他经常展示一些网络上的可视化图形案例,他还发布数据可视化教程,主要使用R编程语言; Perceptual Edge(perceptualedge.com)由作者兼顾问的Stephen Few制作,他讨论了数据可视化的优缺点,并以人类视觉认知理论为基础,推广数据可视化的最佳实践; Junk Charts( junkcharts.typepad.com)是Kaiser Fung收集表现不佳的数据可视化图表并提出批评的网站。 Visualising Data(visualisingdata.com)由Andy Kirk创建,他详细介绍了数据可视化图表的设计过程,并分析了数据可视化的发展趋势; Storytelling with Data(storytellingwithdata.com)是Cole Nussbaumer的博客,她经常提供数据可视化图表的实际案例; 我在个人网站(policyviz.com)上提供了实用的数据可视化示例,以及讨论了如何进行一场有效的演讲。在我的配套网站HelpMeViz.com上,读者可以提交正在进行的工作,以寻求数据可视化社区的建议和反馈。
五、结论
经济学家可以利用数据可视化图表,让读者快速、准确地理解论文的研究内容。有效的数据图表应该满足以下三个原则:第一,突出重点数据,让数据说话;第二,减少无用信息,凸显关键信息;第三,图文结合,提高阅读流畅度。目前,即使是相当基础的软件(如Excel)也具有很高的拓展性,因此研究者只需投入一点时间学习图形展示的细节,就能获得很高的回报。为了创造有效的可视化图表,请你站在读者的角度思考如何展示数据和阐述事实,以便读者了解你的思想和论点。最后,使用动态或静态的设计模式, 将你的数据、模型和文字与可视化图表搭配起来,构建引人入胜的研究报告。
六、参考文献
3. Brock, Tim. 2013. “Improving on a Pair of Pie Charts.” http://datatodisplay.com/blog/chart-design/improving-pair-pie-charts/.
4. Cairo, Alberto. 2013. The Functional Art: An Introduction to Information Graphics and Visualization. Berkeley, CA: New Riders.
5. Camões, Jorge. 2013. “Finally Revealed: The Optimal Number of Categories in a Pie Chart.” http://www.excelcharts.com/blog/optimal-number-categories-pie-chart/.
6. Cleveland, William S. 1993. Visualizing Data.Summit, NJ: Hobart Press.
7. Coady, Geri. 2013. Colour Accessibility.(The Pocket Guide series: Collection 3.) Five Simple Steps. http://www.fivesimplesteps.com/products/the-pocket-guide-series-collection-three.
8. Corum, Jonathan. 2013. “Storytelling with Data.” Opening keynote address at the Tapestry Conference, held in Nashville, TN, February 23.http://style.org/tapestry/.
9. Few, Stephen. 2004. “Tapping the Power of Visual Perception.” Visual Business Intelligence Newsletter, September 4. http://www.perceptualedge.com/articles/ie/visual_perception.pdf.
10. Few, Stephen. 2005. “Grid Lines in Graphs are Rarely Useful.” Visual Business Intelligence Newsletter, February. http://www.perceptualedge.com/articles/dmreview/grid_lines.pdf.
11. Few, Stephen. 2007. “Save the Pies for Dessert.”Visual Business Intelligence Newsletter(August).
12. Few, Stephen. 2009. Now You See It. Burlingame,CA: Analytics Press.
13. Few, Stephen. 2012. Show Me the Numbers:Designing Tables and Graphs to Enlighten. 2nd ed.Burlingame, CA: Analytics Press.
14. Golombisky, Kim, and Rebecca Hagen. 2010.White Space is Not Your Enemy: A Beginner’s Guideto Communicating Visually through Graphic, Web &Multimedia Design. Burlington, MA: Elsevier, Inc.
15. Hanson, Gordon H. 2012. “The Rise of MiddleKingdoms: Emerging Economies in Global Trade.”Journal of Economic Perspectives 26(2): 41– 64.
16. Harris, Robert L. 1996. Information Graphics: AComprehensive Illustrated Reference. New York, NY:Oxford University Press.
17. Healey, Christopher G., and James T. Enns.2012.“Attention and Visual Memory in Visualizationand Computer Graphics.” IEEE Transactions on Visualization and Computer Graphics 18(7):1170– 88.
18. Heer, Jeffrey, Michael Bostock, and VadimOgievetsky. 2010. “A Tour through the VisualizationZoo.” ACMQueue, May 13. http://queue.acm.org/detail.cfm?id=1805128.19. Hockley, William E., and Tyler Bancroft. 2011.“Extensions of the Picture Superiority Effect inAssociative Recognition.” Canadian Journal ofExperimental Psychology 65(4): 236– 56.20. Kirk, Andy. 2013. “Discussion: Storytelling andSuccess Stories.” April. http://www.visualisingdata.com/index.php/2013/04/discussion-storytelling-and-success-stories/.21. Klerman, Jacob Alex, and Caroline Danielson.2011.“The Transformation of the SupplementalNutrition Assistance Program.” Journal of Policy Analysis and Management 30(4): 863– 88.22. Kosara, Robert. 2013a. “Visual Storytelling in the Age of Data.” Keynote address at the Tapestry Conference, held February in Nashville, TN.http://www.youtube.com/watch?v=qSYEjhR2AwQ&feature=youtu.be.23. Kosara, Robert. 2013b. “How the Rainbow Color Map Misleads.” July 7. http://eagereyes.org/basics/rainbow-color-map.24. Kosara, Robert, and Jock Mackinlay. 2013.“Storytelling: The Next Step for Visualization.”Computer(Special Issue on Cutting-Edge Research in Visualization) 46(5): 44– 50.25. Medina, John. 2008. Brain Rules: 12 Principles for Surviving and Thriving at Work, Home, and School. Pear Press.26. Murray, Scott. 2013. Interactive Data Visualization for the Web: An Introduction to Designing with D3. Sebastopol, CA: O’Reilly Media, Inc.27. Nussbaumer, Cole. 2013. “Strategies for Avoiding the Spaghetti Graph.” March 14. http://www.storytellingwithdata.com/2013/03/avoiding-spaghetti-graph.html.28. Organisation for Economic Co-operation and Development. Accessed, August 2013. “Percentage of Employed Who are Senior Managers, by Sex.”http://www.oecd.org/gender/data/proportionofemployedwhoareseniormanagersbysex.htm.29. Ottaviano, Gianmarco I. P., and Giovanni Peri. 2008. “Immigration and National Wages: Clarifying the Theory and the Empirics.” NBER Working Paper 14188( July).30. Rampell, Catherine. 2013. “Comparing the World’s Glass Ceilings.” Economix, April 2. http://economix.blogs.nytimes.com/2013/04/02/comparing-the-worlds-glass-ceilings/?_r=0.31. Robbins, Naomi. 2013a. “How to Position Y-Axis Labels in Graphs.” February 12. http://www.forbes.com/sites/naomirobbins/2013/02/12/how-to-position-y-axis-labels-in-graphs/.32. Robbins, Naomi. 2013b. Creating More Effective Graphs. 2nd ed. Chart House.33. Schwabish, Jonathan. 2013a. “Mind the Gap—An Economic Remake.” The Why Axis, April. http://thewhyaxis.info/gap-remake/.34. Schwabish, Jonathan. 2013b. “To Label or Not to Label? That Is the Question.” June 10. http://www.allanalytics.com/author.asp?section_id=3072&doc_id=264322.35. Schwabish, Jonathan. 2013c. “VisualizingData: Bad Labels, Easy Fix.” May 2. http://www.allanalytics.com/author.asp?section_id=3072&doc_id=262539.36. Segel, Edward, and Jeffrey Heer. 2010. “Narrative Visualization: Telling Stories with Data.” IEEE Transactions on Visualization and Computer Graphics 16(6): 1139– 48.37. Shneiderman, Ben. 1996. “The Eyes Have It: A Task by Data Type Taxonomy for Information Visualizations.” In Proceedings of the IEEE Symposiumon Visual Languages, IEEE Computer Societ Press, 336–43.38. Skau, Drew. 2012. “2D’s Company, 3D’s a Crowd.” http://blog.visual.ly/2ds-company-3ds-a-crowd/.39. Social Security Administration. 2009. Fast Facts & Figures About Social Security, 2009. Social Security Administration( July). http://www.ssa.gov/policy/docs/chartbooks/fast_facts/2009/fast_facts09.pdf.40. Social Security Advisory Board. 2012. Aspects of Disability Decision Making: Data and Materials. Social Security Administration(February),http://www.ssab.gov/Publications/Disability/GPO_Chartbook_FINAL_06122012.pdf.41. Spiekermann, Erik, and E. M. Ginger. 2003. Stop Stealing Sheep & Find Out How Type Works, 2nd ed. Berkeley, CA: Adobe Press.42. Stinebrickner, Ralph, and Todd Stinebrickner. 2013. “Academic Performance and College Dropout: Using Longitudinal Expectations Data to Estimate a Learning Model.” Western University CIBC Working Paper 2013-5( July), http://economics.uwo.ca/cibc/workingpapers_docs/wp2013/Stinebrickner_Stinebrickner05.pdf.43. Tondreau, Beth. 2009. Layout Essentials: 100 Design Principles for Using Grids. Beverly, MA: Rockport Publishers.44. Tukey, John W. 1977. Exploratory Data Analysis Reading, MA: Addison Wesley.45. Tufte, Edward. 2001 [1983]. The Visual Display of Quantitative Information. 2nd ed.(First edition 1983). Cheshire, CT: Graphics Press.46. Tufte, Edward. 2006. Beautiful Evidence. Cheshire, CT: Graphics Press.47. Ware, Colin. 2012. Information Visualization: Perception for Design. 3rd ed. Waltham, MA: Morgan Kaufman.48. Wong, Dona M. 2010. The Wall Street Journal Guide to Information Graphics: The Dos and Don’ts of Presenting Data, Facts, and Figures. New York: W. W. Norton and Company.49. Yau, Nathan. 2011. Visualize This: The Flowing Data Guide to Design, Visualization, and Statistics. Indianapolis, IN: Wiley Publishing, Inc.50. Yau, Nathan. 2013. Data Points: Visualization that Means Something. Indianapolis, IN: Wile Publishing, Inc.
点击阅读原文,进入CCAD数据库
长按识别,添加小客服企业微信~
·END·
星标⭐我们不迷路!
想要文章及时到,文末“在看”少不了!
点击搜索你感兴趣的内容吧
往期推荐
数据Seminar
这里是大数据、分析技术与学术研究的三叉路口
文丨Jonathan A. Schwabish
审阅丨杨奇明
排版编辑丨青酱
欢迎扫描👇二维码添加关注