分布式消息队列 RocketMQ 源码分析 —— 高可用
摘要: 原创出处 http://www.iocoder.cn/RocketMQ/high-availability/ 「芋道源码」欢迎转载,保留摘要,谢谢!
本文主要基于 RocketMQ 4.0.x 正式版
1. 概述
2. Namesrv 高可用
2.1 Broker 注册到 Namesrv
2.2 Producer、Consumer 访问 Namesrv
3. Broker 高可用
3.2 Broker 主从
3.1.1 配置
3.1.2 组件
3.1.3 通信协议
3.1.4 Slave
3.1.5 Master
3.1.6 Master_SYNC
3.2 Producer 发送消息
3.3 Consumer 消费消息
4. 总结
友情提示:欢迎关注公众号【芋道源码】。😈关注后,拉你进【源码圈】微信群和【芋艿】搞基嗨皮。
友情提示:欢迎关注公众号【芋道源码】。😈关注后,拉你进【源码圈】微信群和【芋艿】搞基嗨皮。
友情提示:欢迎关注公众号【芋道源码】。😈关注后,拉你进【源码圈】微信群和【芋艿】搞基嗨皮。
1. 概述
本文主要解析 Namesrv
、 Broker
如何实现高可用, Producer
、 Consumer
怎么与它们通信保证高可用。
2. Namesrv 高可用
启动多个 Namesrv
实现高可用。
相较于 Zookeeper
、 Consul
、 Etcd
等, Namesrv
是一个超轻量级的注册中心,提供命名服务。
2.1 Broker 注册到 Namesrv
📌 多个
Namesrv
之间,没有任何关系(不存在类似Zookeeper
的Leader
/Follower
等角色),不进行通信与数据同步。通过Broker
循环注册多个Namesrv
。
1: // ⬇️⬇️⬇️【BrokerOuterAPI.java】
2: public RegisterBrokerResult registerBrokerAll(
3: final String clusterName,
4: final String brokerAddr,
5: final String brokerName,
6: final long brokerId,
7: final String haServerAddr,
8: final TopicConfigSerializeWrapper topicConfigWrapper,
9: final List<String> filterServerList,
10: final boolean oneway,
11: final int timeoutMills) {
12: RegisterBrokerResult registerBrokerResult = null;
13:
14: List<String> nameServerAddressList = this.remotingClient.getNameServerAddressList();
15: if (nameServerAddressList != null) {
16: for (String namesrvAddr : nameServerAddressList) { // 循环多个 Namesrv
17: try {
18: RegisterBrokerResult result = this.registerBroker(namesrvAddr, clusterName, brokerAddr, brokerName, brokerId,
19: haServerAddr, topicConfigWrapper, filterServerList, oneway, timeoutMills);
20: if (result != null) {
21: registerBrokerResult = result;
22: }
23:
24: log.info("register broker to name server {} OK", namesrvAddr);
25: } catch (Exception e) {
26: log.warn("registerBroker Exception, {}", namesrvAddr, e);
27: }
28: }
29: }
30:
31: return registerBrokerResult;
32: }
2.2 Producer、Consumer 访问 Namesrv
📌
Producer
、Consumer
从Namesrv
列表选择一个可连接的进行通信。
1: // ⬇️⬇️⬇️【NettyRemotingClient.java】
2: private Channel getAndCreateNameserverChannel() throws InterruptedException {
3: // 返回已选择、可连接Namesrv
4: String addr = this.namesrvAddrChoosed.get();
5: if (addr != null) {
6: ChannelWrapper cw = this.channelTables.get(addr);
7: if (cw != null && cw.isOK()) {
8: return cw.getChannel();
9: }
10: }
11: //
12: final List<String> addrList = this.namesrvAddrList.get();
13: if (this.lockNamesrvChannel.tryLock(LOCK_TIMEOUT_MILLIS, TimeUnit.MILLISECONDS)) {
14: try {
15: // 返回已选择、可连接的Namesrv
16: addr = this.namesrvAddrChoosed.get();
17: if (addr != null) {
18: ChannelWrapper cw = this.channelTables.get(addr);
19: if (cw != null && cw.isOK()) {
20: return cw.getChannel();
21: }
22: }
23: // 从【Namesrv列表】中选择一个连接的返回
24: if (addrList != null && !addrList.isEmpty()) {
25: for (int i = 0; i < addrList.size(); i++) {
26: int index = this.namesrvIndex.incrementAndGet();
27: index = Math.abs(index);
28: index = index % addrList.size();
29: String newAddr = addrList.get(index);
30:
31: this.namesrvAddrChoosed.set(newAddr);
32: Channel channelNew = this.createChannel(newAddr);
33: if (channelNew != null)
34: return channelNew;
35: }
36: }
37: } catch (Exception e) {
38: log.error("getAndCreateNameserverChannel: create name server channel exception", e);
39: } finally {
40: this.lockNamesrvChannel.unlock();
41: }
42: } else {
43: log.warn("getAndCreateNameserverChannel: try to lock name server, but timeout, {}ms", LOCK_TIMEOUT_MILLIS);
44: }
45:
46: return null;
47: }
3. Broker 高可用
启动多个 Broker分组
形成 集群
实现高可用。Broker分组
= Master节点
x1 + Slave节点
xN。
类似 MySQL
, Master节点
提供读写服务, Slave节点
只提供读服务。
3.2 Broker 主从
每个分组,
Master
节点 不断发送新的CommitLog
给Slave
节点。Slave
节点 不断上报本地的CommitLog
已经同步到的位置给Master
节点。Broker分组
与Broker分组
之间没有任何关系,不进行通信与数据同步。消费进度 目前不支持
Master
/Slave
同步。
集群内, Master
节点 有两种类型: Master_SYNC
、 Master_ASYNC
:前者在 Producer
发送消息时,等待 Slave
节点 存储完毕后再返回发送结果,而后者不需要等待。
3.1.1 配置
目前官方提供三套配置:
2m-2s-async
brokerClusterName | brokerName | brokerRole | brokerId |
---|---|---|---|
DefaultCluster | broker-a | ASYNC_MASTER | 0 |
DefaultCluster | broker-a | SLAVE | 1 |
DefaultCluster | broker-b | ASYNC_MASTER | 0 |
DefaultCluster | broker-b | SLAVE | 1 |
| |||
brokerClusterName | brokerName | brokerRole | brokerId |
--- | --- | --- | --- |
DefaultCluster | broker-a | SYNC_MASTER | 0 |
DefaultCluster | broker-a | SLAVE | 1 |
DefaultCluster | broker-b | SYNC_MASTER | 0 |
DefaultCluster | broker-b | SLAVE | 1 |
| |||
brokerClusterName | brokerName | brokerRole | brokerId |
--- | --- | --- | --- |
DefaultCluster | broker-a | ASYNC_MASTER | 0 |
DefaultCluster | broker-b | ASYNC_MASTER | 0 |
3.1.2 组件
再看具体实现代码之前,我们来看看 Master
/ Slave
节点 包含的组件:
Master
节点ReadSocketService
:读来自Slave
节点 的数据。WriteSocketService
:写到往Slave
节点 的数据。AcceptSocketService
:接收Slave
节点 连接。HAConnection
Slave
节点HAClient
:对Master
节点 连接、读写数据。
3.1.3 通信协议
Master
节点 与 Slave
节点 通信协议很简单,只有如下两条。
对象 | 用途 | 第几位 | 字段 | 数据类型 | 字节数 | 说明 |
---|---|---|---|---|---|---|
Slave=>Master | 上报CommitLog已经同步到的物理位置 | |||||
0 | maxPhyOffset | Long | 8 | CommitLog最大物理位置 | ||
Master=>Slave | 传输新的 CommitLog 数据 | |||||
0 | fromPhyOffset | Long | 8 | CommitLog开始物理位置 | ||
1 | size | Int | 4 | 传输CommitLog数据长度 | ||
2 | body | Bytes | size | 传输CommitLog数据 |
3.1.4 Slave
Slave
主循环,实现了不断不断不断从Master
传输CommitLog
数据,上传Master
自己本地的CommitLog
已经同步物理位置。
1: // ⬇️⬇️⬇️【HAClient.java】
2: public void run() {
3: log.info(this.getServiceName() + " service started");
4:
5: while (!this.isStopped()) {
6: try {
7: if (this.connectMaster()) {
8: // 若到满足上报间隔,上报到Master进度
9: if (this.isTimeToReportOffset()) {
10: boolean result = this.reportSlaveMaxOffset(this.currentReportedOffset);
11: if (!result) {
12: this.closeMaster();
13: }
14: }
15:
16: this.selector.select(1000);
17:
18: // 处理读取事件
19: boolean ok = this.processReadEvent();
20: if (!ok) {
21: this.closeMaster();
22: }
23:
24: // 若进度有变化,上报到Master进度
25: if (!reportSlaveMaxOffsetPlus()) {
26: continue;
27: }
28:
29: // Master过久未返回数据,关闭连接
30: long interval = HAService.this.getDefaultMessageStore().getSystemClock().now() - this.lastWriteTimestamp;
31: if (interval > HAService.this.getDefaultMessageStore().getMessageStoreConfig()
32: .getHaHousekeepingInterval()) {
33: log.warn("HAClient, housekeeping, found this connection[" + this.masterAddress
34: + "] expired, " + interval);
35: this.closeMaster();
36: log.warn("HAClient, master not response some time, so close connection");
37: }
38: } else {
39: this.waitForRunning(1000 * 5);
40: }
41: } catch (Exception e) {
42: log.warn(this.getServiceName() + " service has exception. ", e);
43: this.waitForRunning(1000 * 5);
44: }
45: }
46:
47: log.info(this.getServiceName() + " service end");
48: }
第 8 至 14 行 :固定间隔(默认5s)向
Master
上报Slave
本地CommitLog
已经同步到的物理位置。该操作还有心跳的作用。第 16 至 22 行 :处理
Master
传输Slave
的CommitLog
数据。
我们来看看
#dispatchReadRequest(...)
与#reportSlaveMaxOffset(...)
是怎么实现的。
1: // 【HAClient.java】
2: /**
3: * 读取Master传输的CommitLog数据,并返回是异常
4: * 如果读取到数据,写入CommitLog
5: * 异常原因:
6: * 1. Master传输来的数据offset 不等于 Slave的CommitLog数据最大offset
7: * 2. 上报到Master进度失败
8: *
9: * @return 是否异常
10: */
11: private boolean dispatchReadRequest() {
12: final int msgHeaderSize = 8 + 4; // phyoffset + size
13: int readSocketPos = this.byteBufferRead.position();
14:
15: while (true) {
16: // 读取到请求
17: int diff = this.byteBufferRead.position() - this.dispatchPostion;
18: if (diff >= msgHeaderSize) {
19: // 读取masterPhyOffset、bodySize。使用dispatchPostion的原因是:处理数据“粘包”导致数据读取不完整。
20: long masterPhyOffset = this.byteBufferRead.getLong(this.dispatchPostion);
21: int bodySize = this.byteBufferRead.getInt(this.dispatchPostion + 8);
22: // 校验 Master传输来的数据offset 是否和 Slave的CommitLog数据最大offset 是否相同。
23: long slavePhyOffset = HAService.this.defaultMessageStore.getMaxPhyOffset();
24: if (slavePhyOffset != 0) {
25: if (slavePhyOffset != masterPhyOffset) {
26: log.error("master pushed offset not equal the max phy offset in slave, SLAVE: "
27: + slavePhyOffset + " MASTER: " + masterPhyOffset);
28: return false;
29: }
30: }
31: // 读取到消息
32: if (diff >= (msgHeaderSize + bodySize)) {
33: // 写入CommitLog
34: byte[] bodyData = new byte[bodySize];
35: this.byteBufferRead.position(this.dispatchPostion + msgHeaderSize);
36: this.byteBufferRead.get(bodyData);
37: HAService.this.defaultMessageStore.appendToCommitLog(masterPhyOffset, bodyData);
38: // 设置处理到的位置
39: this.byteBufferRead.position(readSocketPos);
40: this.dispatchPostion += msgHeaderSize + bodySize;
41: // 上报到Master进度
42: if (!reportSlaveMaxOffsetPlus()) {
43: return false;
44: }
45: // 继续循环
46: continue;
47: }
48: }
49:
50: // 空间写满,重新分配空间
51: if (!this.byteBufferRead.hasRemaining()) {
52: this.reallocateByteBuffer();
53: }
54:
55: break;
56: }
57:
58: return true;
59: }
60:
61: /**
62: * 上报进度
63: *
64: * @param maxOffset 进度
65: * @return 是否上报成功
66: */
67: private boolean reportSlaveMaxOffset(final long maxOffset) {
68: this.reportOffset.position(0);
69: this.reportOffset.limit(8);
70: this.reportOffset.putLong(maxOffset);
71: this.reportOffset.position(0);
72: this.reportOffset.limit(8);
73:
74: for (int i = 0; i < 3 && this.reportOffset.hasRemaining(); i++) {
75: try {
76: this.socketChannel.write(this.reportOffset);
77: } catch (IOException e) {
78: log.error(this.getServiceName()
79: + "reportSlaveMaxOffset this.socketChannel.write exception", e);
80: return false;
81: }
82: }
83:
84: return !this.reportOffset.hasRemaining();
85: }
3.1.5 Master
ReadSocketService
逻辑同HAClient#processReadEvent(...)
基本相同,我们直接看代码。
1: // ⬇️⬇️⬇️【ReadSocketService.java】
2: private boolean processReadEvent() {
3: int readSizeZeroTimes = 0;
4:
5: // 清空byteBufferRead
6: if (!this.byteBufferRead.hasRemaining()) {
7: this.byteBufferRead.flip();
8: this.processPostion = 0;
9: }
10:
11: while (this.byteBufferRead.hasRemaining()) {
12: try {
13: int readSize = this.socketChannel.read(this.byteBufferRead);
14: if (readSize > 0) {
15: readSizeZeroTimes = 0;
16:
17: // 设置最后读取时间
18: this.lastReadTimestamp = HAConnection.this.haService.getDefaultMessageStore().getSystemClock().now();
19:
20: if ((this.byteBufferRead.position() - this.processPostion) >= 8) {
21: // 读取Slave 请求来的CommitLog的最大位置
22: int pos = this.byteBufferRead.position() - (this.byteBufferRead.position() % 8);
23: long readOffset = this.byteBufferRead.getLong(pos - 8);
24: this.processPostion = pos;
25:
26: // 设置Slave CommitLog的最大位置
27: HAConnection.this.slaveAckOffset = readOffset;
28:
29: // 设置Slave 第一次请求的位置
30: if (HAConnection.this.slaveRequestOffset < 0) {
31: HAConnection.this.slaveRequestOffset = readOffset;
32: log.info("slave[" + HAConnection.this.clientAddr + "] request offset " + readOffset);
33: }
34:
35: // 通知目前Slave进度。主要用于Master节点为同步类型的。
36: HAConnection.this.haService.notifyTransferSome(HAConnection.this.slaveAckOffset);
37: }
38: } else if (readSize == 0) {
39: if (++readSizeZeroTimes >= 3) {
40: break;
41: }
42: } else {
43: log.error("read socket[" + HAConnection.this.clientAddr + "] < 0");
44: return false;
45: }
46: } catch (IOException e) {
47: log.error("processReadEvent exception", e);
48: return false;
49: }
50: }
51:
52: return true;
53: }
WriteSocketService
计算Slave
开始同步的位置后,不断向Slave
传输新的CommitLog
数据。
1: // ⬇️⬇️⬇️【WriteSocketService.java】
2: @Override
3: public void run() {
4: HAConnection.log.info(this.getServiceName() + " service started");
5:
6: while (!this.isStopped()) {
7: try {
8: this.selector.select(1000);
9:
10: // 未获得Slave读取进度请求,sleep等待。
11: if (-1 == HAConnection.this.slaveRequestOffset) {
12: Thread.sleep(10);
13: continue;
14: }
15:
16: // 计算初始化nextTransferFromWhere
17: if (-1 == this.nextTransferFromWhere) {
18: if (0 == HAConnection.this.slaveRequestOffset) {
19: long masterOffset = HAConnection.this.haService.getDefaultMessageStore().getCommitLog().getMaxOffset();
20: masterOffset = masterOffset - (masterOffset % HAConnection.this.haService.getDefaultMessageStore().getMessageStoreConfig().getMapedFileSizeCommitLog());
21: if (masterOffset < 0) {
22: masterOffset = 0;
23: }
24:
25: this.nextTransferFromWhere = masterOffset;
26: } else {
27: this.nextTransferFromWhere = HAConnection.this.slaveRequestOffset;
28: }
29:
30: log.info("master transfer data from " + this.nextTransferFromWhere + " to slave[" + HAConnection.this.clientAddr
31: + "], and slave request " + HAConnection.this.slaveRequestOffset);
32: }
33:
34: if (this.lastWriteOver) {
35: long interval = HAConnection.this.haService.getDefaultMessageStore().getSystemClock().now() - this.lastWriteTimestamp;
36: if (interval > HAConnection.this.haService.getDefaultMessageStore().getMessageStoreConfig().getHaSendHeartbeatInterval()) { // 心跳
37:
38: // Build Header
39: this.byteBufferHeader.position(0);
40: this.byteBufferHeader.limit(headerSize);
41: this.byteBufferHeader.putLong(this.nextTransferFromWhere);
42: this.byteBufferHeader.putInt(0);
43: this.byteBufferHeader.flip();
44:
45: this.lastWriteOver = this.transferData();
46: if (!this.lastWriteOver)
47: continue;
48: }
49: } else { // 未传输完成,继续传输
50: this.lastWriteOver = this.transferData();
51: if (!this.lastWriteOver)
52: continue;
53: }
54:
55: // 选择新的CommitLog数据进行传输
56: SelectMappedBufferResult selectResult =
57: HAConnection.this.haService.getDefaultMessageStore().getCommitLogData(this.nextTransferFromWhere);
58: if (selectResult != null) {
59: int size = selectResult.getSize();
60: if (size > HAConnection.this.haService.getDefaultMessageStore().getMessageStoreConfig().getHaTransferBatchSize()) {
61: size = HAConnection.this.haService.getDefaultMessageStore().getMessageStoreConfig().getHaTransferBatchSize();
62: }
63:
64: long thisOffset = this.nextTransferFromWhere;
65: this.nextTransferFromWhere += size;
66:
67: selectResult.getByteBuffer().limit(size);
68: this.selectMappedBufferResult = selectResult;
69:
70: // Build Header
71: this.byteBufferHeader.position(0);
72: this.byteBufferHeader.limit(headerSize);
73: this.byteBufferHeader.putLong(thisOffset);
74: this.byteBufferHeader.putInt(size);
75: this.byteBufferHeader.flip();
76:
77: this.lastWriteOver = this.transferData();
78: } else { // 没新的消息,挂起等待
79: HAConnection.this.haService.getWaitNotifyObject().allWaitForRunning(100);
80: }
81: } catch (Exception e) {
82:
83: HAConnection.log.error(this.getServiceName() + " service has exception.", e);
84: break;
85: }
86: }
87:
88: // 断开连接 & 暂停写线程 & 暂停读线程 & 释放CommitLog
89: if (this.selectMappedBufferResult != null) {
90: this.selectMappedBufferResult.release();
91: }
92:
93: this.makeStop();
94:
95: readSocketService.makeStop();
96:
97: haService.removeConnection(HAConnection.this);
98:
99: SelectionKey sk = this.socketChannel.keyFor(this.selector);
100: if (sk != null) {
101: sk.cancel();
102: }
103:
104: try {
105: this.selector.close();
106: this.socketChannel.close();
107: } catch (IOException e) {
108: HAConnection.log.error("", e);
109: }
110:
111: HAConnection.log.info(this.getServiceName() + " service end");
112: }
113:
114: /**
115: * 传输数据
116: */
117: private boolean transferData() throws Exception {
118: int writeSizeZeroTimes = 0;
119: // Write Header
120: while (this.byteBufferHeader.hasRemaining()) {
121: int writeSize = this.socketChannel.write(this.byteBufferHeader);
122: if (writeSize > 0) {
123: writeSizeZeroTimes = 0;
124: this.lastWriteTimestamp = HAConnection.this.haService.getDefaultMessageStore().getSystemClock().now();
125: } else if (writeSize == 0) {
126: if (++writeSizeZeroTimes >= 3) {
127: break;
128: }
129: } else {
130: throw new Exception("ha master write header error < 0");
131: }
132: }
133:
134: if (null == this.selectMappedBufferResult) {
135: return !this.byteBufferHeader.hasRemaining();
136: }
137:
138: writeSizeZeroTimes = 0;
139:
140: // Write Body
141: if (!this.byteBufferHeader.hasRemaining()) {
142: while (this.selectMappedBufferResult.getByteBuffer().hasRemaining()) {
143: int writeSize = this.socketChannel.write(this.selectMappedBufferResult.getByteBuffer());
144: if (writeSize > 0) {
145: writeSizeZeroTimes = 0;
146: this.lastWriteTimestamp = HAConnection.this.haService.getDefaultMessageStore().getSystemClock().now();
147: } else if (writeSize == 0) {
148: if (++writeSizeZeroTimes >= 3) {
149: break;
150: }
151: } else {
152: throw new Exception("ha master write body error < 0");
153: }
154: }
155: }
156:
157: boolean result = !this.byteBufferHeader.hasRemaining() && !this.selectMappedBufferResult.getByteBuffer().hasRemaining();
158:
159: if (!this.selectMappedBufferResult.getByteBuffer().hasRemaining()) {
160: this.selectMappedBufferResult.release();
161: this.selectMappedBufferResult = null;
162: }
163:
164: return result;
165: }
3.1.6 Master_SYNC
Producer
发送消息时,Master_SYNC
节点 会等待Slave
节点 存储完毕后再返回发送结果。
核心代码如下:
1: // ⬇️⬇️⬇️【CommitLog.java】
2: public PutMessageResult putMessage(final MessageExtBrokerInner msg) {
3: // ....省略处理发送代码
4: // Synchronous write double 如果是同步Master,同步到从节点
5: if (BrokerRole.SYNC_MASTER == this.defaultMessageStore.getMessageStoreConfig().getBrokerRole()) {
6: HAService service = this.defaultMessageStore.getHaService();
7: if (msg.isWaitStoreMsgOK()) {
8: // Determine whether to wait
9: if (service.isSlaveOK(result.getWroteOffset() + result.getWroteBytes())) {
10: if (null == request) {
11: request = new GroupCommitRequest(result.getWroteOffset() + result.getWroteBytes());
12: }
13: service.putRequest(request);
14:
15: // 唤醒WriteSocketService
16: service.getWaitNotifyObject().wakeupAll();
17:
18: boolean flushOK = request.waitForFlush(this.defaultMessageStore.getMessageStoreConfig().getSyncFlushTimeout());
19: if (!flushOK) {
20: log.error("do sync transfer other node, wait return, but failed, topic: " + msg.getTopic() + " tags: "
21: + msg.getTags() + " client address: " + msg.getBornHostString());
22: putMessageResult.setPutMessageStatus(PutMessageStatus.FLUSH_SLAVE_TIMEOUT);
23: }
24: }
25: // Slave problem
26: else {
27: // Tell the producer, slave not available
28: putMessageResult.setPutMessageStatus(PutMessageStatus.SLAVE_NOT_AVAILABLE);
29: }
30: }
31: }
32:
33: return putMessageResult;
34: }
第 16 行 :唤醒
WriteSocketService
。唤醒后,
WriteSocketService
挂起等待新消息结束,Master
传输Slave
新的CommitLog
数据。Slave
收到数据后,立即上报最新的CommitLog
同步进度到Master
。ReadSocketService
唤醒第 18 行:request#waitForFlush(...)
。
我们来看下 GroupTransferService
的核心逻辑代码:
1: // ⬇️⬇️⬇️【GroupTransferService.java】
2: private void doWaitTransfer() {
3: synchronized (this.requestsRead) {
4: if (!this.requestsRead.isEmpty()) {
5: for (CommitLog.GroupCommitRequest req : this.requestsRead) {
6: // 等待Slave上传进度
7: boolean transferOK = HAService.this.push2SlaveMaxOffset.get() >= req.getNextOffset();
8: for (int i = 0; !transferOK && i < 5; i++) {
9: this.notifyTransferObject.waitForRunning(1000); // 唤醒
10: transferOK = HAService.this.push2SlaveMaxOffset.get() >= req.getNextOffset();
11: }
12:
13: if (!transferOK) {
14: log.warn("transfer messsage to slave timeout, " + req.getNextOffset());
15: }
16:
17: // 唤醒请求,并设置是否Slave同步成功
18: req.wakeupCustomer(transferOK);
19: }
20:
21: this.requestsRead.clear();
22: }
23: }
24: }
3.2 Producer 发送消息
Producer
发送消息时,会对Broker
集群 的所有队列进行选择。
核心代码如下:
1: // ⬇️⬇️⬇️【DefaultMQProducerImpl.java】
2: private SendResult sendDefaultImpl(//
3: Message msg, //
4: final CommunicationMode communicationMode, //
5: final SendCallback sendCallback, //
6: final long timeout//
7: ) throws MQClientException, RemotingException, MQBrokerException, InterruptedException {
8: // .... 省略:处理【校验逻辑】
9: // 获取 Topic路由信息
10: TopicPublishInfo topicPublishInfo = this.tryToFindTopicPublishInfo(msg.getTopic());
11: if (topicPublishInfo != null && topicPublishInfo.ok()) {
12: MessageQueue mq = null; // 最后选择消息要发送到的队列
13: Exception exception = null;
14: SendResult sendResult = null; // 最后一次发送结果
15: int timesTotal = communicationMode == CommunicationMode.SYNC ? 1 + this.defaultMQProducer.getRetryTimesWhenSendFailed() : 1; // 同步多次调用
16: int times = 0; // 第几次发送
17: String[] brokersSent = new String[timesTotal]; // 存储每次发送消息选择的broker名
18: // 循环调用发送消息,直到成功
19: for (; times < timesTotal; times++) {
20: String lastBrokerName = null == mq ? null : mq.getBrokerName();
21: MessageQueue tmpmq = this.selectOneMessageQueue(topicPublishInfo, lastBrokerName); // 选择消息要发送到的队列
22: if (tmpmq != null) {
23: mq = tmpmq;
24: brokersSent[times] = mq.getBrokerName();
25: try {
26: beginTimestampPrev = System.currentTimeMillis();
27: // 调用发送消息核心方法
28: sendResult = this.sendKernelImpl(msg, mq, communicationMode, sendCallback, topicPublishInfo, timeout);
29: endTimestamp = System.currentTimeMillis();
30: // 更新Broker可用性信息
31: this.updateFaultItem(mq.getBrokerName(), endTimestamp - beginTimestampPrev, false);
32: // .... 省略:处理【发送返回结果】
33: }
34: } catch (e) { // .... 省略:处理【异常】
35:
36: }
37: } else {
38: break;
39: }
40: }
41: // .... 省略:处理【发送返回结果】
42: }
43: // .... 省略:处理【找不到消息路由】
44: }
如下是调试 #sendDefaultImpl(...)
时 TopicPublishInfo
的结果, Producer
获得到了 broker-a
, broker-b
两个 Broker
分组 的消息队列:
3.3 Consumer 消费消息
Consumer
消费消息时,会对Broker
集群 的所有队列进行选择。