查看原文
其他

Microbiome:微生物组研究中你必须注意的细节

2017-08-19 刘永鑫 宏基因组

点击上方蓝色「宏基因组」关注我们!专业干货每日推送!

微生物组研究中优化方法和规避误区

2017年五月发表在Microbiome上的综述,对于老司机会有很多共鸣,对于新人更要必读,少走弯路。

微生物组学研究最大的问题:实验难重复。就像古希腊哲学家赫拉克利特说“人不能两次踏进同一条河流”。微生物组实时在变,己有文章表明动、植物的细菌组在昼夜间都有10-20%的部分存在显著的变化(Cell, 2015; Microbiome, 2016)。反之在自然界,研究对象的微生组每个月、每年有多大变化可想而知。因此实验室的的人工重组实验是目前可重复实验的主要手段。

对于研究自然对象的实验,很多条件我们在野外或农田无法控制,如温度、湿度、降雨等等,它们己知对微生物群落结果影响都非常大,但这些并不影响发现的真正自然规律。

在科学实验中最怕的不是当前技术认识的局限性而导致的误差或错误,而是由于人为知识和经验不足采用了不合理或错误方法,引入的假阳性结果并把这些假阳性结果当成重大发现去发表。一般审稿人都是专业,很容易把关实验设计和分析。但很多低水平杂志,根本找不到高水平的审稿人,大家就马马虎虎的审,再发表,再没人看,错了也没人知道。进入了垃圾文章的怪圈。

我还是建议做课题前,还是至少读相关文献100篇,把握主流研究的技术体系,不至于有明显错误。读10几篇高水平综述,比Articles更高效,快速学习别人总结的经验。比如这篇文章指出了很多明显的常见错误,希望大家仔细阅读,尽量避免,不要等到审稿人指出再改,实验可就真白做了。

摘要

  • 人类微生物组的研究发现其大量疾病和健康相关,但仍存在比较多的假阳性结果。

  • 本文旨在传达关于优化微生物组相关的实验设计、规避已知误区的建议;

  • 综述实验设计中最好的研究方法,介绍动物研究中常见的年龄、膳食、抗生素使用、宠物饲养、纵向(时间上)不稳定性和共住期间微生物分享等,并对几种样品类型提出了最好的储存方法;

  • 讨论应配合实验样本的阳性和阴性对照的设计和分析,介绍了可用作阳性对照的非生物DNA序列;仔细分析正负对照是非常重要的,因为污染可导致部分或全部样品改变;

  • 总结了通过多重比较的严格控制,及比较发现和验证性队列的方式提高实验稳健性的方法。

  • 希望本文总结的实验策略可以帮助研究人员有加速研究、避免误区。

微生物组实验计划

  • 考虑影响因素:抗生素使用、年龄、性别、饮食习惯、地理和宠物主人

  • 考虑时间梯度上的变化:健康人群肠道菌群时间梯度上比较稳定,但在每天也存在昼夜节律。人体其它部分不同时间则变化很大,如阴道菌群可以短期内发生极大变化。

  • 实验动物的笼子效果

图1. 实例显示不同笼子可以决定老鼠的真菌类型

考虑样品收集和处理过程

  • 样品储存条件

图2. 主坐标轴分析表明不同储存条件下菌群分析结果存在明显差别

  • 小样品量要避免环境污染

图3. 试剂盒不同提取方式可导致明显污染,其中胎盘样本与负对照相似

  • 设置合理的负对照

图4. 负对照可展示污染的菌种类

  • 设置合理的正对照

图5. 合成非细菌的16S DNA作为正对照

  • 鸟枪法宏基因组测序中的染污

图6. 宏基因组测序中的污染

分析中要考虑的问题

  • 处理负对照

  • 多重比较控制显著性和假阳性率

  • 发现和验证组双重检验提高结果可信度

英文摘要原文

Research on the human microbiome has yielded numerous insights into health and disease, but also has resulted in a wealth of experimental artifacts. 

Here, we present suggestions for optimizing experimental design and avoiding known pitfalls, organized in the typical order in which studies are carried out. We first review best practices in experimental design and introduce common confounders such as age, diet, antibiotic use, pet ownership, longitudinal instability, and microbial sharing during cohousing in animal studies. Typically, samples will need to be stored, so we provide data on best practices for several sample types. We then discuss design and analysis of positive and negative controls, which should always be run with experimental samples. We introduce a convenient set of non-biological DNA sequences that can be useful as positive controls for high-volume analysis. Careful analysis of negative and positive controls is particularly important in studies of samples with low microbial biomass, where contamination can comprise most or all of a sample. Lastly, we summarize approaches to enhancing experimental robustness by careful control of multiple comparisons and to comparing discovery and validation cohorts. 

We hope the experimental tactics summarized here will help researchers in this exciting field advance their studies efficiently while avoiding errors.

Reference

  1. Optimizing methods and dodging pitfalls in microbiome research DOI: 10.1186/s40168-017-0267-5 https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-017-0267-5

  2. http://www.xunludkp.com/papers/read/1062523140?kf=xread_daily

想了解更多宏基因组、16S分析相关文章,

快关注“宏基因组”公众号,干货第一时间推送。

系统学习生物信息,快关注“生信宝典”,

那里有几千志同道合的小伙伴一起学习。

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存