查看原文
其他

推荐:机器学习入门方法和资料合集

The following article is from AI算法之心 Author 何从庆

点击上方“Python数据科学”,星标公众号

重磅干货,第一时间送达


☞500g+超全学习资源免费领取,干货来袭!


作者:何从庆
来源:AI算法之心

目录


(1)语言:机器学习中常用的语言。
(2)书籍:书中自有黄金屋,机器学习中涉及到的很多数学理论,只看视频或者博客是很难获取到完整的知识框架。
(3)视频:书中有些公式推导很难理解,可以看看大牛们深入浅出的课程。
(4)博客:经常看一些大牛们的分享,对于扩展知识面具有一定的帮助。
(5)比赛:实践是检验学习成果重要标准,参加一些算法竞赛,对于理解算法有着良好的帮助。
(6)论文:对于一些硕士来说,创新是检验学习能力重要体现。



语言


“人生苦短,我用python”,python目前已经成为机器学习中最主流的语言,由于其丰富的算法库。
1、numpy: 最基础的python库之一
地址:http://www.numpy.org/

2、pandas: 常用于数据处理的库
地址:
https://pandas.pydata.org/pandas-docs/stable/

3、scipy: SciPy是一个开源的Python算法库和数学工具包。
地址:
https://docs.scipy.org/doc/scipy/reference/tutorial/index.html

4、scikit-learn:sklearn包含众多的算法接口,从监督学习到半监督学习,再到无监督学习。还有评价指标、特征选择等。
地址:https://scikit-learn.org/

5、scikit-multilearn:multi-label的算法库。
地址:http://scikit.ml/

6、keras:最适合入门深度学习的小伙伴的算法库。
地址:https://keras.io/zh/

还有一些较难的深度学习算法库,如tensorflow,pytorch。



书籍


1、《统计学习方法》:李航老师的《统计学习方法》这本书堪称经典,很多同学都靠着这本书找到理想的工作,强力推荐!对于许多想入门机器学习的小伙伴们,建议多看几遍这本书,弄懂算法的每一个细节。

2、《机器学习》:周志华老师的《机器学习》这本书,很多人又称之为西瓜书,也是很有帮助的。基本涵盖机器学习的所有分支,如监督学习,无监督学习,半监督学习,强化学习,特征选择等。

3、《推荐系统实战》:项亮博士的《推荐系统实战》这本书,很适合对于想了解推荐系统的小伙伴们有一定的帮助。

4、《概率论与数理统计》:很多机器学习算法都是从统计学概率论上发展而来的,对于概率知识统计知识不足的小伙伴们,建议研读这本书。

5、《Pattern Recognition and Machine Learning》:如果有小伙伴们英文比较好,小伙伴们也可以看看PRML这本经典的书。

6、《Reinforcement Learning: An Introduction》:如果有小伙伴想研究强化学习,这是一本不错的强化学习入门书籍。


视频


如果小伙伴们对于上述书籍看起来很吃力,很难弄懂算法的来龙去脉,建议将书籍(初学者推荐:《统计学习方法》)与视频结合起来,相互促进。


1、吴恩达老师的公开课:网易云上和coursera上都有他的讲课,很基础的版本,建议大家入门的时候多看看这个视频。个人觉得coursera上面的课程比较简单点。

网易云上面的地址:
http://open.163.com/special/opencourse/machinelearning.html

coursera上面的地址:
https://www.coursera.org/learn/machine-learning


2、李宏毅老师的课程:李宏毅老师的课程也是比较好,值得大家学习。
这里有整理好的版本:
https://blog.csdn.net/soulmeetliang/article/details/77461607



博客


国内:
1、火光摇曳:腾讯技术大牛们的博客
地址:http://www.flickering.cn/

2、美团技术团队的博客:里面也有很多干货: 
地址:https://tech.meituan.com/

3、苏剑林的博客里面也全是干货
地址:https://spaces.ac.cn/

4、还有一些比较大型的博客网站,如博客园,简书,CSDN,知乎等等。


国外:
1、Netflix:Netflix技术博客,很多干货。
地址:https://medium.com/netflix-techblog

2、Towards Data Science:主要分享些概念、idea和代码。
址:https://towardsdatascience.com/

3、Github: all code is here。



比赛


学习机器学习的过程中,如何检验自己学习的成果呢?比赛就是一个比较好的方向,比赛其实可能会为了成绩,抠那千分位,百分位的差距,但是其实在比赛中思考才是最重要的。如何将这些经典的算法应用到工业中,这些算法在工业中的优缺点?慢慢体会!

国内比较大型的算法平台有:
天池大数据:https://tianchi.aliyun.com/home/

datacastle:http://www.pkbigdata.com/

datafountain:https://www.datafountain.cn/

biendata:https://biendata.com/

kesci:https://www.kesci.com/

Jdata:https://jdata.jd.com/


国外比较大型的算法平台有:
kaggle:https://www.kaggle.com/


比赛平台有很多,这几个是比较出名的平台。大家可以去官网看一看,有很多正在进行中的比赛。另外,还有很多其他的平台,这里我就不介绍了,近些天,我和我朋友也在思考这个问题,是否可以做个网站,集成这些比赛网站还有国外著名会议的学术评测比赛呢?欢迎大家在留言区一起讨论!



论文


小论文成为中国硕士毕业老难题!其实,写一篇比较简单的ccf c类的论文并不是很难,或许 ccf b  ccf a类的论文确实很难!如何入门呢?看近些年机器学习、人工智能的顶级会议、期刊论文(会议论文速度更快)。这里我仅整理下会议论文,值得看的会议文章:


1、数据挖掘类:

SIGKDD:顶级数据挖掘论文
2019年:审稿中
2018年accepted paper:
https://www.kdd.org/kdd2018/accepted-papers

2017年accepted paper:
https://www.kdd.org/kdd2017/accepted-papers

2016年accepted paer: 
https://www.kdd.org/kdd2016/program/accepted-papers


SIGIR:顶级推荐系统论文
2019年accepted paper:审稿中
2018年accepted paper: 
http://sigir.org/sigir2018/accepted-papers/

2017年accepted paper:
http://sigir.org/chiir2017/accepted-papers.html

2016年accepted paper: 
http://sigir.org/sigir2016/full-papers/
http://sigir.org/sigir2016/short-papers/


还有一些次顶级会议:CIKM/ECML-PKDD/ICDM/SDM/WSDM


2、机器学习类:


AAAI: 顶级人工智能综合会议
2019年accepted paper: 
https://aaai.org/Conferences/AAAI-19/wp-content/uploads/2018/11/AAAI-19_Accepted_Papers.pdf

2018年accepted paper: 
https://aaai.org/Conferences/AAAI-18/wp-content/uploads/2017/12/AAAI-18-Accepted-Paper-List.Web_.pdf

2017年accepted paper:  
https://www.aaai.org/Conferences/AAAI/2017/aaai17accepted-papers.pdf


IJCAI: 顶级人工智能综合会议
2019年 accepted paper: 审稿中
2018年accepted paper: 
http://www.ijcai-18.org/accepted-papers/index.html
2017年accepted paper: 
https://ijcai-17.org/accepted-papers.html



ICML :顶级机器学习会议
2019年accepted paper: 审稿中
2018年accepted paper:
https://icml.cc/Conferences/2018/Schedule?type=Poster
2017年accepted paper: 
https://icml.cc/Conferences/2017/Schedule?type=Poster



NIPS:顶级综合人工智能会议
2019年accpeted paper: 征稿中
2018年accepted paper: 
https://nips.cc/Conferences/2018/Schedule?type=Poster
2017年accepted paper:
https://nips.cc/Conferences/2017/Schedule?type=Poster


还有一些其他的专业人工智能会议:如自然语言处理领域的 ACL/EMNLP/NAACL/COLING。偏统计的人工智能会议:AISTATS。
图像的人工智能会议:CVPR/ICCV/ECCV。


推荐阅读

1、自学Python 有这些就够了

2、堪称神器的 Chrome 插件

3、HR说平均工资20k,所以我到底可以拿多少?

4、值得收藏:一份非常完整的 MySQL 规范

5、数学不好也能学会AI编程!微软研究院AI实践课程上新


    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存