Gen 2: Core-shell Nanowire纳米多级结构是一种解决大体积变化相关问题的新颖方法。2009年,崔屹教授课题组设计了硅纳米线的核壳结构。通过简单的一步合成,可以在集流体上直接生长出核-壳结构的晶体硅-非晶硅纳米线。由于锂化电位的差异,非晶硅壳具有电化学活性,而不是晶体硅核。因此,晶体硅核起到稳定的机械支撑和有效导电路径的作用,而非晶态硅壳则存储Li+。该核壳硅纳米线具有非常高的电荷存储容量(约1000 mAh/g),在100个循环后仍具有约90%的容量保持率,在高倍率充放电下也显示出优异的电化学性能。[3]
此外,2019年9月30日,崔屹教授团队与武汉理工大学麦立强教授团队共同在Chemical Reviews 专刊“1D Nanomaterials/Nanowires”上发表了综述性文章 “Nanowires for Electrochemical Energy Storage”。该文章系统地概述了纳米线用于电化学先进储能的最新研究进展,讨论了纳米线在储能方面的优势和挑战,介绍了从设计合成、原位结构表征到储能领域一些重要应用,包括锂离子电池、锂硫电池、钠离子电池和超级电容器等,并展望了未来先进纳米线材料用于电化学储能装置的前景。[4]
Gen 5: Yolk-shell2012年,崔屹教授课题组设计了蛋黄-壳结构以改善硅负极的主要问题。该制备无需特殊设备来制备,且可在室温下进行。商业上买到的Si纳米颗粒被完全密封在共形的,薄的,自支撑的碳壳内部,在颗粒和壳之间具有合理设计的空隙,该空间可让Si粒子自由膨胀而不会破坏碳外壳,因此可稳定壳表面上的SEI。该硅电极实现了高容量(在0.1C时约为2800 mAh/g),长循环寿命(1000次循环容量保持率为74%)和高库仑效率(99.84%)。[7]
Gen8: Pomegranate-Like2014年,崔屹教授课题组提出了一种可解决硅负极所有问题的多级分层结构。该设计灵感来自石榴的结构,其中单个硅纳米颗粒被导电碳层包裹,为锂化和脱锂后的膨胀和收缩留有足够的空间。然后这些纳米粒子整体包裹在微米级的碳层中,充当电解质的屏障。基于该结构优势,SEI保持稳定并在空间上受到限制,从而电极实现了出色的可循环性(1000次循环后容量保持率达到97%)。微结构降低了电极与电解质的接触面积,从而导致了高库仑效率(99.87%)和体积容量(1270 mAh cm-3),并且即使将面积容量提高到商用水平(3.7 mAh cm-2),锂离子电池循环仍保持稳定。[10]
Gen9: Nonfilling Carbon Coating on porous Si尽管通过纳米级材料设计在克服硅负极的问题上取得了巨大进步,但实际应用仍需要提高体积容量和降低成本。为了解决这些问题,2015年,崔屹教授课题组设计了一种无填充碳涂层的多孔硅微粒。在这种结构中,多孔硅微粒由许多相互连接的初级硅纳米颗粒组成。仅硅微粒的外表面涂有碳,而内部的孔结构没有填充。无填充的碳涂层会阻止电解质渗透到多孔硅微粒中,最大程度地减小电极与电解质的接触面积,并保留用于Si膨胀的内部空间,使得SEI的形成主要限于微粒的外部。该电极具有高的可逆比容量和循环性能(〜1500 mAh/g,1000个循环),且不会损失堆积密度,从而可实现高容量(约1000 mAh cm–3)。面容量可以达到3 mAh cm–2以上,质量负载为2.01 mg cm–2。[11]
Gen10: Prelithiation of Si anodes由于形成SEI和在负极处捕获锂,导致低的首次库仑效率(ICE)这个问题没有解决。2014年,崔屹教授课题组报道了LixSi–Li2O核壳纳米粒子是一种出色的预锂化材料。该纳米颗粒通过一步热合金化工艺生产,可在浆液中加工,并且在干燥空气条件下具有Li2O钝化壳的保护能力,且显示出高容量,表明这些纳米粒子可与工业电池制造工艺兼容。硅和石墨负极均成功地用这些纳米颗粒进行了预镀,实现了>94%至100%的高首圈库伦效率。[12]
Gen12: Shell-protected Secondary Si particles中空纳米结构设计为高能电池创造了令人兴奋的希望。然而,在电极制造的碾压过程中机械稳定性较弱以及体积能量密度较差的问题仍有待解决。2018年,崔屹教授课题组通过在次级微米级硅颗粒上设计密集的硅壳涂层来制造耐压硅结构,次级微米级颗粒中的每个颗粒均包含许多硅纳米颗粒。硅层显著提高了机械稳定性,而内部多孔结构能够有效地缓解体积膨胀。这种结构可以抵抗超过100 MPa的高压,并且在碾压过程之后仍可以显示出2041 mAh cm-3的高容量。另外,致密的硅壳减小了比表面并因此提高了首次库仑效率。进一步用石墨烯笼封装,能够允许硅核在笼中扩展,同时保持电接触,该材料展现出高的初始库仑效率,库仑效率快速上升至> 99.5%,并在全电池中具有出色的稳定性。[14]
从崔屹教授课题组发展的这12代硅负极设计可以看出,每种结构都是针对材料存在的问题,以及商业化存在的挑战进行合理的设计。随着一代代地推进,硅负极的性能不断地提高,结构设计在不断优化,从实验室合成迈向商业大规模应用化,相信这些会为我们带来新的思考和启发!参考文献:[1] Jakob Asenbauer, Tobias Eisenmann, Matthias Kuenzel, Arefeh Kazzazi, Zhen Chen, Dominic Bresser, The success story of graphite as a lithium-ion anode material – fundamentals, remaining challenges, and recent developments including silicon (oxide) composites, Sustainable Energy Fuels, DOI: 10.1039/d0se00175a.https://pubs.rsc.org/en/content/articlelanding/2020/SE/D0SE00175A#!divAbstract[2] Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Huggins, Yi Cui, High-performance lithium battery anodes using silicon nanowires, Nature Nanotechnology, 2008.https://www.nature.com/articles/nnano.2007.411[3] Li-Feng Cui, Riccardo Ruffo, Candace K. Chan, Hailin Peng, and Yi Cui, Crystalline-Amorphous Core−Shell Silicon Nanowires for High Capacity and High Current Battery Electrodes, Nano Letters, 2009.https://pubs.acs.org/doi/abs/10.1021/nl8036323[4] Guangmin Zhou, Lin Xu, Guangwu Hu, Liqiang Mai, and Yi Cui, Nanowires for Electrochemical Energy Storage, Chem. Rev. 2019https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.9b00326[5] Yan Yao, Matthew T. McDowell, Ill Ryu, Hui Wu, Nian Liu, Liangbing Hu, William D. Nix, and Yi Cui, Interconnected Silicon Hollow Nanospheres for Lithium-Ion Battery Anodes with Long Cycle Life, Nano Letters, 2009.https://pubs.acs.org/doi/abs/10.1021/nl201470j[6] Hui Wu, Gerentt Chan, Jang Wook Choi, Ill Ryu, Yan Yao, Matthew T. McDowell, Seok Woo Lee, Ariel Jackson, Yuan Yang, Liangbing Hu & Yi Cui, Stable cycling of double-walled silicon nanotube battery anodes through solid–electrolyte interphase control, Nature Nanotechnology, 2012.https://www.nature.com/articles/nnano.2012.35[7] Nian Liu, Hui Wu, Matthew T. McDowell, Yan Yao, Chongmin Wang, and Yi Cui, A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes, Nano Letters, 2012.https://pubs.acs.org/doi/abs/10.1021/nl3014814[8] Hui Wu, Guihua Yu, Lijia Pan, Nian Liu, Matthew T. McDowell, Zhenan Bao, Yi Cui, Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles, Nature Communications, 2013.https://www.nature.com/articles/ncomms2941[9] Chao Wang, Hui Wu, Zheng Chen, Matthew T. McDowell, Yi Cui & Zhenan Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nature Chemistry, 2013.https://www.nature.com/articles/nchem.1802[10] N. Liu, Z. Lu, J. Zhao, M. T. McDowell, H. W. Lee, W. Zhao, and Y.Cui, A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes, Nature Nanotechnology, 2014.https://www.nature.com/articles/nnano.2014.6[11] Z. Lu, N. Liu, H.-W. Lee, J. Zhao, W. Li, Y. Li, and Y. Cui, Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes, ACS Nano,2015.https://pubs.acs.org/doi/abs/10.1021/nn505410q[12] J. Zhao, Z. Lu, N. Liu, H.-W. Lee, M. T. McDowell, and Y. Cui, Dry-air-stable lithium silicide-lithium oxide core-shell nanoparticles as high-capacity prelithiation reagents, Nature Communications, 2014.https://www.nature.com/articles/ncomms6088?origin=ppub[13] Y. Li, K.Yan, H.-W. Lee, Z. Lu, N. Liu, and Y. Cui, Growth of conformal graphene cages on micrometre-sized particles as stable battery anodes, Nature Energy, 2016, 1, 15029.https://www.nature.com/articles/nenergy201529[14] Jiangyan Wang, Lei Liao, Yuzhang Li, Jie Zhao, Feifei Shi, Kai Yan, Allen Pei, Guangxu Chen, Guodong Li, Zhiyi Lu, and Yi Cui, Shell-protective secondary silicon nanostructures as pressure resistant high-volumetric-capacity anodes for lithium-ion batteries, Nano Letters, 2018.https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.8b03065