余桂华EcoMat:NRR过程中的单原子vs双原子催化剂
The following article is from EcoMat Author EcoMat
成果简介
通过电化学还原氮分子合成氨是显着降低传统工业过程能耗的一种有前景的策略。探究多步复杂氮还原反应的详细机理是设计高效催化剂的前提。稳定的原子分散催化剂具有独特的几何和电子结构,适用于阐述这种复杂反应的机理。鉴于此,德克萨斯大学奥斯汀分校余桂华团队在EcoMat发表了题为“Single vs double atom catalyst for N2 activation in nitrogen reduction reaction: A DFT perspective”的研究论文。作者通过密度泛函理论 (DFT) 计算研究了d 嵌段过渡金属 (TM) 锚定的C2N单层催化剂。单TM锚定单原子催化剂 (SAC) 和双TM锚定双原子催化剂 (DAC) 在原子分散催化剂中均表现出良好的热力学稳定性。对于SAC,IVB族金属(Ti、Zr、Hf)表现出最高的反应性和最低的过电位。而对于DACs,Cr─Cr体系促使形成NH3产物,而V─V体系则形成N2H4。由于不同的活化机制,SAC 显示出比 DAC 低得多的过电位和更强的N2分子催化活性:在 SAC中发现了传统的σ-donation/π-backdonation N2催化机制,而在DAC中发现了新的π-donation/π-backdonation N2催化机制。目前的工作表明SAC和 DAC对 NRR具有不同的催化作用及其相应的电子结构起源,有助于我们更深入地了解单原子催化剂。
内容详情
FIGURE 1 TM coordinated to the graphene, A, and metalloporphyrin, B. The structure of single, C. and double. D, anchored C2N monolayer. The purple atom is in the armchair site, and the pink and purple circles are in the zig-zag and central site, respectively
FIGURE 2 Cohesive energy relative to the bulk crystal of the selected d block elements anchored on C2N monolayer. ESAC/DAC is the binding energy of TM anchored on C2N, and Ebulk is the bulk cohesive energy of transition metal
FIGURE 3 A, B, Adsorption energy of N2H and NH2 on selected TM anchored C2N layer. The comparison of hydrogen adsorption energy and N2H adsorption energy on SAC and DAC anchored system: C, parallel adsorption (DAC-P); D, vertical adsorption (DAC-V); E, adsorption on the SAC
FIGURE 4 The adsorption energy of various intermediate along the reaction pathway. A and B, N2 parallel (DAC-P) and vertical (DAC-V) adsorption case for TM double anchored DAC. C, The TM single anchored SAC case. D and E, The corresponding reaction pathway for DAC and SAC
FIGURE 5 N2 molecule activation mechanism for the DAC, A, and SAC, B and C. The π (left) and σ (right) splitting of LOL for N2 adsorption on the double anchored V, D, single anchored Sc, E, and Ti, F, respectively
结论
总之,通过对NRR过程中d 嵌段过渡金属 (TM) 锚定的C2N单层催化剂的计算表明,SAC和DAC都表现出良好的热力学稳定性。计算结果表明,单锚定的Sc、Y、La、Ti、Zr、Hf SAC和双锚定的Cr、V DACs为有前途的NRR催化剂。在这些元素中,Cr和V形成牢固的金属—金属键,其他元素倾向于作为单一掺杂剂存在以形成SAC。d轨道的不同占位导致SAC和DAC具有不同的反应性和选择性。对于SAC,最终都会形成NH3产物。但IVB体系比IIIB体系具有更强的N2催化能力和更低的过电位。在双掺杂DAC中发现了一种新的 π-donation/π-backdonation N2分子活化机制。目前的工作使用C2N来表明COF类似材料具有稳定分散良好的原子催化剂的强大潜力。SAC和COF都处于初级阶段,我们期待这两个领域的融合可以形成一个新的平台,可以更清晰、更深入地了解SAC或DAC等原子分散催化剂的机理。未来将会有更多新颖的和令人兴奋的新发现,以促进SAC在各种电化学领域的基础科学理解和实际应用,如NRR、HER、ORR、OER 等。
文献信息
Yumin Qian, Yuanyue Liu, Yu Zhao, Xiaohong Zhang, Guihua Yu, Single vs double atom catalyst for N2 activation in nitrogen reduction reaction: A DFT perspective, EcoMat. 2020;2:e12014
原文链接:https://doi.org/10.1002/eom2.12014
END
扫描二维码获取
更多精彩
EcoMat