其他
瞧!这些发明算法的人
The following article is from 量子材料QuantumMaterials Author 严正、孟子杨
点击上方蓝字“返朴”进入主页,可关注查阅往期文章
量子蒙卡
穿破青春未展颜时光将老亦无闲扯来量子缝裁好披上清云越景山撰文 | 严正、孟子杨
1
编 按
我国物理人中,亦有一些“文采飞扬、情怀感性”之前辈和当代佼佼者,自然不必提及“笔下娟秀、娓娓道来”的中国物理骄傲之杨振宁先生。当代人中,有如网红物理人“贤说八道”的曹则贤。这里还有一位,即本文作者之一的孟子杨。子杨老师行文通透、情怀充盈,却一直从事着“极为严谨的”量子多体算法之类的研究工作。他似乎能够在两个能量简并、但功能迥异的量子态之间随意跃迁、收放自如。当然,他麾下有一位助手,即本文另一位作者的严正博士,也有类似气质。 期刊《npj Quantum Materials》有幸得严正博士和子杨老师眷顾,而微信公众号《量子材料》亦有缘刊登此文。
1引 子
发明量子多体问题算法的人,多与普通人不同。他们身上有一种得道高僧、终南隐士的先知之气,往往想要扬弃和重新评价流俗所看重的种种价值观念,率性而为以至于不被社会所理解,甚至被视为狂士和疯子。这其中的原因,恐怕还是来自于在量子多体问题中发明算法本身的难度。 对于量子多体物理学中的基本晶格模型,从量子 Ising 模型,到海森堡模型,到 t - J 模型、Hubbard 模型、量子 dimer 模型、及至时下流行的 K – Γ 模型、Yukawa – SYK、 Kang – Vafek 模型等等。这些问题的计算复杂度,在普遍情况下,都是随着模型中自由度数目 (比如晶格中的电子数、自旋数、轨道数等) 而指数增加。物理学家想要从统计的意义上计算 100 个电子的物理性质,问题的相空间大小就是 2100 或者 4100 这样的天文数字。而眼下,就算用到最快的超级计算机,人类的计算能力也只能进行代数复杂度的计算,更不要说处理实际量子材料中阿伏伽德罗常数 (1023 ) 量级的电子了。 如此困难和挑战,庶几“人生有何意义”和“与尔同消万古愁”这样的终极问题,在一般意义上难有普适的答案。每天面对着这样终极问题的人,其心态自然和普通人不同。这就好比古希腊的悲剧作家,他们明明知道命运是无法抗拒的,作为个人只能退而求其次,尝试着用手中的笔诚惶诚恐地描述悲剧性抗拒的过程,以求得到精神上的出路和慰藉。 在这样的背景之下,如果有人可以设计出一种合适的算法,成功地用代数计算复杂度去克服某个或者某一类量子多体晶格模型问题的指数相空间,其重要性就可想而知、其神奇更是让人惊叹。从算法的发明人来说,因为看穿极度复杂问题的“曾经沧海”和“除却巫山”,因为可以成功地克服看似不可能完成的任务而暂时地摆脱困扰人类的终极问题,他们自然就不愿再被日常中柴米油盐鸡零狗碎的问题所牵绊。因此,他们也就渐渐开始扬弃流俗,独自向着狂士和疯子的方向前进了。阿门! 这样的例子其实不少。比如提出了 h – index 的 Jorge Hirsch,他在量子多体研究方面很大的一项贡献,即是完善了费米子行列式的蒙特卡洛 (determinant quantum Monte Carlo, DQMC) 算法。他在 1980 年代初期的工作,结结实实地告诉人们:半满正方晶格 Hubbard 模型的基态是具有长程反铁磁序的绝缘相。这些坚实的数值结果,为后来的 resonance valence bond (RVB) 图像、doped Mott insulator 和 slave particle 描述自旋-电荷分离等等理论构想,打下了坚实基础。而 Hirsch 本人,从此之后就不屑于凝聚态物理学当下那些一地鸡毛般的杂碎问题了,开始向着狂士迈进,比如他老先生最近的文章: J. E. Hirsch, Superconductivity, what the H? The emperor has no clothes, https://arxiv.org/abs/2001.09496, also in “APS Forum on Physics and Society Newsletter, January 2020, p. 4-9”. 这题目,就有一股查拉图斯特拉那种“上帝已死”的尼采气扑面而来。 再比如发明了解决海森堡等自旋模型的随机级数展开 (stochastic series expansion, SSE) 算法的 Anders Sandvik。众所周知,诸如海森堡模型或 XXZ 模型所描述的量子磁体基态、相变和动力学,都是老大难问题。但是,因为有了 Anders Sandvik 的 SSE 算法,从 1990 年代开始,人们便有了可以严格计算的高效手段。这一手段易学好用,已经变成眼下许多量子多体计算课题组入门学生的第一步学习资料。Sandvik 有个很有意思的中文名 —— 善德伟。此名虽然不及王重阳、丘处机这样的名号高渺,但还是有一股道系仙气和出世气,都是我们芸芸众生和普通群众所不能比拟的。 如此看来,在量子多体晶格模型中,还是有一些可以用代数计算复杂度来克服指数相空间的成功案例。纵然这些问题需要一个一个地克服,纵然在克服的过程中造就了诸位狂士和仙人,但重要的是,这些成功的算法,比如上面提到的 DQMC 和 SSE,不仅解决了问题,其核心在于在设计中抓住了问题的物理实质,让我等豁然开朗。这些方法,不能只靠强大计算资源和高超编程技巧来解决问题,而更重要的是要运用物理学的原理来达到高效遍历相空间的目的。事实上,高瞄如善德伟老师者,至今还对面向对象编程的做法嗤之以鼻。可见从业人员真正需要的,是追求技术和思想的共同进步,而不是头痛医头、脚痛医脚。量子多体前沿的物理人面对的现状是:不能解决的问题远远多于已经解决的问题,所以每一步推进都显得弥足珍贵! 本文致力于讲述本领域中的一个新进展,推介一个刚刚发明的扫描团簇 (sweeping cluster) 算法。在此基础上,我们展示如何运用这样的算法,去解决量子二聚模型 (quantum dimer model, QDM)。如此成功案例,令人激动和欢愉。 2解决QDM的扫描团簇算法
量子二聚模型 (QDM) 是从阻挫磁体和统计物理中产生的低能有效模型。这一模型,可以说是把 RVB 的图像用一种简化的方式写在晶格上。QDM 要求每个格点上有且仅有一个最近程 (最近邻) 的 dimer,其局域约束条件见图 1 的正方晶格的 dimer 构型 (黑粗棒表示 dimer)。同样,我们也可以定义三角、六角晶格等格子上的 dimer 构型。
如上所述,QDM 在不可分的阻挫晶格中其实对应着 Z2 规范场。三角晶格的 QDM可以实现具有 Z2 拓扑序的量子自旋液体 (quantum spin liquid, QSL) 基态,也可以研究自旋液体与不同 dimer 排成的 valence bond solid (VBS) 晶体之间的量子相变。注意到,其中有一种晶体具有奇异的 √12 × √12 涌现序。在这个模型中,既可以研究 Z2 拓扑序中的 vison 任意子激发及其在相变过程中的凝聚行为,也可以探讨从 QSL 到 √12 ×√12 的 VBS 之间的涌现连续对称性等有趣的物理问题。这些问题从 QDM 初生之时就被反复提及,并在当时力所能及的理论与计算框架之下多方讨论[1, 2, 4, 9, 10]。然而,由于没有确定性的数值计算结果,完整的图像还是没有建立起来。
4瞧!这些发明算法的人
拉拉杂杂写下这些,其实就是想把扫描团簇算法的发明及其在解决量子 dimer 模型中的应用过程推介给感兴趣的读者。正如本文引子中提到的,量子多体问题十分复杂,每一步算法的进步都推动着领域前进的扎实脚步。以代数量级的计算复杂度去征服指数量级的量子多体相空间,渗透着人们对于物理问题本身的深入理解。在算法设计中,也体现了紧密契合模型微观物理过程的尝试,以及对最新计算软件硬件的熟练应用。当然,对量子多体问题的探索,最终还体现着人们对于问题本身深刻而丰富的物理内涵之深深眷恋和不懈求索。 无论如何,对于这些发明算法的人,也许他们在最终看破一切之后会遁入空门、逃进深山、避世嫉俗。但是,面对着 “以代数计算复杂度征服指数相空间”这样庶几的“人生有何意义”之终极问题,他们痛苦过、奋斗过、成功过 (更多的时候是失败过)。这样结结实实、有血有肉的独特体验,是他们的光荣,更是他们的成绩与自豪。
参考文献
[1] Moessner, R., & Raman, K. S. (2011). Quantum dimer models. In Introduction to frustrated magnetism (pp. 437 - 479). Springer, Berlin, Heidelberg.[2] Moessner, R., & Sondhi, S. L. (2001). Ising models of quantum frustration. Physical Review B 63, 224401.[3] Yan, Z., Wang, Y. C., Ma, N., Qi, Y., & Meng, Z. Y. (2021). Topological phase transition and single / multi anyon dynamics of Z2 spin liquid, npj Quantum Materials 6, 39.[4] Fradkin, E. (2013). Gauge theory, dimer models, and topological phases. In Field theoriesof condensed matter physics (pp. 286 - 342). Cambridge University Press.[5] Rokhsar, D. S. and Kivelson, S. A. (1988). Superconductivity and the quantum hard-core dimer gas. Physical Review Letters 61, 2376.[6] Alet, F., Jacobsen, J. L., Misguich, G., Pasquier,V., Mila, F., & Troyer, M. (2005). Interacting classical dimers on the square lattice. Physical Review Letters 94, 235702.[7] Yan, Z., Wu, Y., Liu, C., Syljuåsen, O. F., Lou, J. & Chen, Y. (2019). Sweeping cluster algorithm for quantum spin systems with strong geometric restrictions. Physical Review B 99, 165135.[8] Yan, Z. (2020). Improved sweeping cluster algorithm for quantum dimer model. arXiv preprint arXiv: 2011.08457.[9] Misguich, G., & Mila, F. (2008). Quantum dimer model on the triangular lattice: Semiclassical and variational approaches to vison dispersion and condensation. Physical Review B 77, 134421.[10] Ivanov, D. A. (2004). Vortex like elementary excitations in the Rokhsar - Kivelson dimer model on the triangular lattice. Physical Review B 70, 094430.[11] Wang, Y. C., Cheng, M., Witczak - Krempa, W., & Meng, Z. Y. (2020). Fractionalized conductivity at topological phase transitions. arXiv preprint, arXiv: 2005.07337.[12] Sun, G. Y., Wang, Y. C., Fang, C., Qi, Y., Cheng, M., & Meng, Z. Y. (2018). Dynamical signature of symmetry fractionalization in frustrated magnets. Physical Review Letters 121, 077201.[13] 孟子杨,《学好蒙特卡洛,不会被忽悠》,https://mp.weixin.qq.com/s/1uqCWbKmIELOR8ehFvtSSw备注
(1) 笔者严正、孟子杨,目前供职于香港大学。《瞧!这个人》是德国哲学家尼采的自传,这里借这个题目,取仰慕先贤“重估一切价值”的批判精神之意。(2) 文首处的小诗为 Ising 所撰,表达对发展计算方法的物理人之敬意。本文经授权转载自微信公众号“量子材料QuantumMaterials”。
相关阅读
1 伊辛模型百年小史:最经典的复杂系统模型,却险些被科学界遗忘
近期推荐
1 终结新冠,还是与毒共存?五大原因或致群体免疫失败,新冠许是下一个流感
特 别 提 示
1. 进入『返朴』微信公众号底部菜单“精品专栏“,可查阅不同主题系列科普文章。
2. 『返朴』提供按月检索文章功能。关注公众号,回复四位数组成的年份+月份,如“1903”,可获取2019年3月的文章索引,以此类推。
收不到推送了?快加星标!!
长按下方图片关注「返朴」,查看更多历史文章