一种切割时间的方法,斩获2023年诺贝尔物理学奖
The following article is from 现代物理知识杂志 Author 周胜鹏 刘爱华
点击上方蓝字“返朴”关注我们,查看更多历史文章
瑞典皇家科学院决定将 2023 年诺贝尔物理学奖授予Pierre Agostini、Ferenc Krausz和Anne L’Huillier,“表彰他们为研究物质中的电子动力学而产生阿秒光脉冲的实验方法”。
三位2023年诺贝尔物理学奖得主被表彰是因为他们的实验为人类提供了探索原子和分子内部电子世界的新工具。Pierre Agostini、Ferenc Krausz和Anne L’Huillier展示了一种创造极短光脉冲的方法,可以用于测量电子移动或改变能量的快速过程。
对于人类来说,快速运动的事件在感知时会相互流动,就像一部由静止图像组成的电影被感知为连续运动。如果我们想要调查真正短暂的事件,就需要特殊的技术。在电子的世界中,变化发生在几十个阿秒内——阿秒有多短?1阿秒之于1秒,相当于1秒之于宇宙的年龄。
获奖者的实验产生了极短的光脉冲,其测量单位是阿秒,从而证明这些脉冲可以用于提供原子和分子内部过程的图像。
在1987年,Anne L’Huillier发现,当她通过惰性气体传输红外激光光线时,会产生许多不同的光波谐波。每个谐波都是具有激光周期一定数量的循环的光波。它们是由激光光线与气体中的原子相互作用引起的;这使得一些电子获得额外的能量,然后以光的形式发射出来。Anne L’Huillier一直在探索这一现象,为随后的突破奠定了基础。
在2001年,Pierre Agostini成功地产生并研究了一系列连续的光脉冲,其中每个脉冲仅持续250阿秒。与此同时,Ferenc Krausz正在进行另一种类型的实验,使得能够隔离持续650阿秒的单个光脉冲。
这些诺贝尔奖得主的贡献使得对之前无法跟踪的极快速过程的研究成为可能。
“我们现在可以打开电子世界的大门。阿秒物理学为我们提供了理解由电子掌控的机制的机会。下一步将是利用它们,”瑞典皇家科学院物理学诺贝尔委员会主席Eva Olsson表示。
在许多不同领域都存在潜在应用。例如,在电子学中,了解和控制电子在材料中的行为非常重要。,例如在医学诊断中,阿秒脉冲也可以用于识别不同的分子。
中科院物理所研究员曹则贤对《返朴》表示,光是我们同远方的联系,也是我们深入微观世界的唯一工具。光与电子是微观物理,特别是量子力学的主题。著名的1927年第五次索尔维会议的主题就是光子与电子。阿秒光脉冲的实现是光学和光学技术的进步,也赋予我们以研究更短时段内、更小尺度上的物理量现象特别是与电子有关的现象的可能。2023年度诺贝尔物理奖表彰三位获奖人在“research into electrons in flashes of light”的方面的成就, 具体地说是用超快光谱研究电子的运动, 实至名归。
Pierre Agostini,1968年获得法国艾克斯-马赛大学博士学位。现任美国俄亥俄州立大学教授。
Ferenc Krausz,1962年生于匈牙利莫尔。1991年从奥地利维也纳科技大学获得博士学位。德国马克斯·普朗克量子光学研究所所长,慕尼黑路德维希-马克西米利安大学教授。
Anne L’Huillier,1958年生于法国巴黎。1986年从巴黎皮埃尔和玛丽·居里大学获得博士学位。现任瑞典隆德大学教授。
下文是一篇科普旧文,供大家一并参考。
撰文 | 周胜鹏 刘爱华(吉林大学原子与分子物理研究所)
如今,人类的探测器已经飞出了太阳系,而天文学家们的观测范围更是达到了数百亿光年。空间的距离,可以通过光的传播进行测量,空间的分辨率则变成了在时间上要求更高的分辨率 (更快的快门) 。对于时间的分辨率,人们常常会用到以下几个关于时间的单位:皮秒 (1ps=10-12 s) ,飞秒 (1fs=10-15 s) 和阿秒 (1as=10-18 s) 。
在激光产生之后,人们就在追求脉冲激光的更高强度和更短脉冲时间过程中对相关技术进行了不断改进。其中,激光锁模技术的发明促进了飞秒激光的诞生,啁啾脉冲放大技术(CPA)以及腔外脉冲压缩技术等的出现则为产生高强度激光提供了可靠的方案并为阿秒光脉冲的出现铺平了道路。
3阿秒光脉冲的产生
人们一直在为产生更短的光脉冲努力着,从100ps到100fs,再到几个飞秒,直到少周期的飞秒激光出现,短脉冲技术停下了脚步。此时,人们很难让脉冲的包络短于一个光学周期。以800nm波长的激光为例,一个光周期的长度为2.66fs,激光的脉冲宽度就很难再短于这个时间了。尽管2013年有一个德国的研究小组成功地将飞秒红外激光的光谱展宽至250~1000nm,并最终压缩至415as,但他们所采用的传统光学脉冲压缩方法很难将激光脉冲的时间宽度进一步缩短。显然,为了获得更短的阿秒光脉冲,人们必须使用更短的载波波长来支持更短的脉冲宽度。
为了产生更短的载波波长,人们需要从光产生的基础理论上得到突破。在阿秒光脉冲出现之前,产生超短脉冲激光的理论基础一直是爱因斯坦的能级跃迁受激辐射。根据受激辐射理论,处于束缚能级上的电子只能在原子核附近运动,所储存的能量有限。一般上下两能级跃迁所发射光子对应的波长都处在可见光附近,可见光一个光学周期一般都在1fs以上,显然难以用来进一步产生更短的阿秒光脉冲。那如果让电子不束缚在原子核附近而是自由放飞会是什么情况呢?
图2 提出经典三步模型的科克姆教授(中)1993年,加拿大物理学家科克姆提出了著名的经典三步模型,该模型为短波长光(极紫外至X射线)产生奠定了理论基础(见图2)。经典三步模型将在强激光作用下原子中的电子运动分为三个过程:隧穿电离、激光加速和回核(见图3)。(1)隧穿电离:原子内部库仑力的强度接近于一个原子单位(3.55×1016 W/cm2),人们通过CPA获得的激光强度已达到了1014到1015 W/cm2,这一强度已经能够与原子内部的库仑力相比拟了。此时,电子就能够以隧穿电离的形式摆脱库仑束缚。从量子力学的角度来讲,这一个微观事件的发生概率与弱激光作用于原子的多光子电离概率相比得到了极大提高。(2)激光加速:当电子摆脱原子核的库仑力,其运动几乎完全由激光电场控制,并且电子的运动轨迹可以很方便的采用经典牛顿力学进行描述。(3)回核:由于激光电场是往复振荡,电子在激光电场的作用下最后会回到原子核附近。在回到原子核的过程中,电子被激光电场加速获得很高的能量。当电子回到原子核,电子的能量以产生高次谐波形式释放这部分能量,辐射高能量光子。释放的光子能量为电子在回到原子核过程获得的动能和电子电离能的总和。因此,电子在激光中加速获得的动能越多,光子的能量就越高。
图4 采用阿秒光脉冲串联合红外激光对阿秒电子波包成像的实验结果(上)和理论结果(下)
人们对凝聚态物理中的许多超快电子过程也有极大兴趣,这些过程包括表面电子屏蔽效应、热电子、电子空穴动力学等。采用阿秒光脉冲实时检测和控制这些凝聚态中的超快电子过程将有助于改进基于电子的信息技术。目前,阿秒光脉冲在凝聚态物质方面主要是研究表面电子瞬态结构。2007年,克劳茨研究组用阿秒光脉冲对固体表面电子进行检测时发现局域4f态和非局域导带电子发射存在100as的时间差。此外,阿秒光脉冲结合瞬态吸收谱技术已经从较早的原子分子体系拓展到了凝聚态体系的研究,结合阿秒光脉冲的超快时间分辨和超宽的光谱范围,有可能为凝聚态物质这种复杂体系的电子动力学研究发展新的技术手段,开拓新的方向。阿秒光脉冲的高能X射线与凝聚态物质中紧密束缚的电子相互作用还可以探测特定原子中电子的空间位置以及瞬间的运动状态,这为研究具有化学元素特异性材料中电子的快速过程提供另类方法。这种能力对于像今天使用的手机和计算机的下一代逻辑和存储芯片这样的发展来说是非常宝贵的。
阿秒光脉冲应用从凝聚态还可以延伸到有机分子和生物分子等更加复杂的体系。在生命科学领域,由于阿秒光脉冲的高能量光子已经可以达到一个能量范围在280eV到530eV间的光谱区域,即所谓的“水窗”,在此区域的光子不能被水吸收,但是能够被构成生物分子的碳原子、氮原子等原子强烈吸收,因此,阿秒光脉冲可用于对活体生物样本进行X射线显微,探测生命科学中的量子过程,为复杂的生物分子的建模、理解和控制奠定基础。例如,用阿秒光脉冲对活细胞中生物分子的电子和原子制作慢动作视频,观测光电转换过程中亚原子尺度的电子动力学过程,分析叶绿体进行光合作用效率能达到40%以上的原因,进而改进光电转换材料的性能,让光电转换效率在10%徘徊的太阳能电池板能够更高效的利用太阳能,为实现绿色环保的地球贡献力量。
总之,由于具有极短的时间分辨,以及可以覆盖包括水窗在内的重要光谱区段,阿秒光脉冲已经成为研究亚原子尺度的物理规律最有力的工具,并且在控制化学合成、从亚原子尺度研究生命现象等方面有着重要的应用前景。
本文经授权转载自微信公众号“ 现代物理知识杂志”。
特 别 提 示
1. 进入『返朴』微信公众号底部菜单“精品专栏“,可查阅不同主题系列科普文章。
2. 『返朴』提供按月检索文章功能。关注公众号,回复四位数组成的年份+月份,如“1903”,可获取2019年3月的文章索引,以此类推。
↓↓↓长按下方图片关注「返朴」,查看更多历史文章