一文看懂WiFi 7
2020 年 9 月,我们庆祝 IEEE 802.11 项目成立 30 周年,该项目改变了我们的连接习惯。
如今,由一系列 IEEE 802.11 标准定义的 Wi-Fi 是最流行的数据传输无线技术。Wi-Fi 传输超过一半的用户流量。虽然蜂窝技术每十年进行一次品牌重塑,例如从 4G 切换到 5G,但对于 Wi-Fi 用户而言,提高数据速率以及引入新服务和新功能的转变几乎是无形的。只有少数客户关心消费电子产品包装盒上“802.11”后面的字母“n”、“ac” 或“ax”。但这并不意味着 Wi-Fi 不进化。
这种演变的见证之一是标称数据速率的急剧增加:从1997年速度为2 Mbps 的IEEE 802.11进化到在最新的802.11ax中几乎达到 10 Gbps的速度,这个标准也称为 Wi-Fi 6。现代 Wi-Fi 实现了这样的性能增益,这要归功于更快的调制和编码方案 (MCS)、更宽的信道以及采用多输入多输出 (MIMO) 技术。
除了高速率无线局域网的主赛道外,Wi-Fi演进还包括几个小众项目。例如,Wi-Fi HaLow (802.11ah) 将 Wi-Fi 带入了无线物联网市场。毫米波 Wi-Fi (802.11ad/ay) 以非常低的范围为代价支持高达 275 Gbps 的标称数据速率。与 8K 视频、虚拟现实、增强现实、游戏、远程办公和云计算相关的新应用和新服务,以及支持无线网络大流量用户的需求,推动了通信转发到极高吞吐量 (EHT) 的无线网络。
2019 年 5 月, Task Group BE (TGbe) 开始着手对 Wi-Fi 标准进行新的修订,将 ≤ 7 GHz 信道中的标称吞吐量提高到超过 40 Gbps,并为实时应用程序提供支持 (RTA)。除了提高数据速率和减少延迟外,这些功能还重新考虑了 Wi-Fi 操作的重要概念,例如前向兼容物理层 (PHY)、可扩展探测、多接入点 (Multi-AP) 合作,这将 为 Wi-Fi 的进一步发展奠定基础。
在本文中,我们将给大家科普一下,WiFi 7是什么?
WiFi的沿革
在第一个 Wi-Fi 标准长达七年的开发过程结束时,很明显其 2 Mbps 的最大标称数据速率太小,无法取代 100 Mbps 以太网。这就是为什么很快,社区就开发了一系列标准修正案,即 802.11a/b/g,通过在 2.4GHz 和 5 GHz 频段中使用新的 MCS,将数据速率提高到 54 Mbps。802.11a 引入了信道带宽为 20 MHz、64 个tones、符号长度为 3.2 µs 加上 0.8 µs 的保护间隔的正交频分复用 (OFDM),形成了以下 Wi-Fi 版本的框架。
Wi-Fi 4 (802.11n) 通过利用多种技术进一步提高数据速率(高达 600 Mbps)。首先,它引入了比之前的 3/4 更高的 5/6 编码率,并可选择将 OFDM 符号之间的保护间隔从 0.8 µs 减少到 0.4 µs。其次,它将信道宽度加倍至 40 MHz。第三,它引入了 MIMO 技术,这是 802.11n 最重要的突破。借助 802.11n,一对设备可以使用多根天线在它们之间同时传输多达四个空间流 (SS)。如果没有新的 MAC 功能,PHY 的高标称数据速率将不会为最终用户带来好处。最重要的 MAC 特性是两种聚合方法,即聚合 MAC 服务数据单元 (A-MSDU) 和聚合 MAC 协议数据单元 (A-MPDU),它们显著减少了由报头(headers)和帧间空间(inter-frame spaces)引起的开销 . A-MSDU 将多个聚合数据包附加到一个 MAC header 和checksum。A-MPDU 为每个聚合数据包分配一个 MAC header 和frame checksum。因此,A-MPDU 通过允许在短噪声突发的情况下解码至少一些数据包来提高传输可靠性,但代价是略微增加了开销。
下一个 10 倍的数据速率增长是通过 802.11ac 修正案 (Wi-Fi 5) 实现的。该修正案扩展了先前版本 Wi-Fi 中使用的方法。因此,它将正交幅度调制 (QAM) 从 64-QAM 增加到 256-QAM,即每个符号的最大原始比特数从 6 增加到 8。信道带宽增加到 160 MHz。由于 2.4 GHz 中没有这样的宽带,802.11ac 只能在 5 GHz 中运行。由于频谱稀缺,修正案允许使用非连续的 80 + 80 MHz 信道,这些信道可以被一些频率间隙分开。
为了应对干扰,在每个数据包传输之前,每个设备都会自适应地选择用于此数据包的带宽:20、40、80 或 160 MHz。至于 MIMO,802.11ac 将 SS 的数量翻了一番,达到 8 个。该标准的制定者已经注意到,几乎不可能为某些设备部署两个以上的天线。此外,接入点(AP)可能只有一小部分数据用于每个客户站(STA)。
为了解决这些问题,802.11ac 引入了下行链路 (DL) 多用户 (MU) MIMO,允许 AP 将不同的 DL SS 分配给不同的 STA。所有这些都意味着将吞吐量提高到 7 Gbps。为了在如此高的数据速率下减少报头引起的开销,该修正案将聚合帧的最大长度从 802.11n 的 65 535 个八位字节增加到 4 692 480 个八位字节。
Wi-Fi 6 (802.11ax) 的发展与范式转变有关。802.11 工作组没有提高标称数据速率,而是专注于提高 Wi-Fi 网络的效率,特别是在密集的 2.4 GHz 和 5 GHz 部署中。首先,他们将正交频分多址接入 (OFDMA) 引入到 Wi-Fi,这允许为 STA 分配小但最有效的时频资源部分。除此之外,Wi-Fi 6 支持上行链路 (UL) MU MIMO 和 OFDMA 传输,并为信道绑定和载波侦听引入了更灵活的规则。AP 完全控制 UL MU 传输的参数,例如 MCS、持续时间等。特别是,它发送包含这些参数和启动 UL MU 传输。
为了提高户外场景的性能并增加 OFDMA 的灵活性,11be 将 OFDM 参数降频四倍,使tones的数量增加四倍。因此 OFDM 符号持续时间变为 12.8 µs 加上 0.8、1.6 或 3.2 µs 的保护间隔。在最短保护间隔的情况下,开销相对于 Wi-Fi 5 降低了 10%。为了提高标称吞吐量,Wi-Fi 6 启用 1024-QAM,比 Wi-Fi 5 的 256-QAM 多承载 25% 的原始数据 . 总而言之,标称数据速率增加了 37%,这与其前代产品所显示的十倍增长相比微不足道。
尽管在密集部署中性能要好得多,但标称吞吐量的如此低的收益可能不会吸引新客户。怀疑论者称,关注运行质量而忽视数量性能指标可能会减缓 Wi-Fi 6 设备的销售。这种担忧是 802.11 工作组转回增加 Wi-Fi 7 标称吞吐量的原因之一,同时改善用户体验(例如,观看未压缩速率为 20 Gbps 的 8K 视频时)并提供游戏所需延迟低于 5 毫秒的实时通信。
高数据速率不足以支持 RTA,因为数据包可能会等待很长时间才能使通道变为空闲或之前的数据包得到服务。因此,除了提供高数据速率之外,802.11be 修正案还处理 RTA 的服务质量 (QoS)。在 Wi-Fi 网络中,有多种方法可以提供 QoS。然而,在实践中只使用了其中的一种,即增强型分布式信道接入(EDCA)。EDCA 通过为它们分配不同的访问类别 (AC) 来区分语音、视频、尽力而为和背景流量类型。由于EDCA扩展了基本的参量通道接入,它不能保证QoS。相比之下,考虑到特定 QoS 要求并使用确定性信道访问的混合协调功能控制信道访问等标准化机制对于在实际设备中的实现来说过于复杂。
2018 年 5 月,当 Wi-Fi 6 特性开发完成,802.11 工作组转而打磨 11ax 修正案时,该组成立了一个新的 EHT Topic Interest Group (TIG) . 其主要目标是在 1 和 7.125 GHz 之间的频段上定义 802.11 的新功能,主要目标是通过扩展 11ac 和 11ax 的 PHY 来提高峰值吞吐量。
2018 年 7 月,EHT TIG 转变为 EHT 研究组,定义了新项目的范围并确定了 11be 的候选特征列表。
与此同时,802.11 讨论了如何在 Wi-Fi 网络中支持 RTA。这方面的工作始于 2017 年 11 月 ,作为 802.11 无线下一代常务委员会活动的一部分,介绍了 Wi-Fi 时间敏感网络 (TSN)。该提案引起了广泛关注,并于 2018 年 7 月推出了 RTA TIG。由于支持 RTA 需要高标称数据速率和一些 MAC 功能来加速标准开发过程,802.11 工作组同意在未来的 11be 修正案中提供对 RTA 的支持。
2018 年,FD TIG 研究了如何在 Wi-Fi中实现 FD 以及该技术可以提供多少增益。11be 开发人员也应考虑这些活动的结果。
2019 年 3 月,EHT Study Group 转型为正在制定 11be 修正案的 TGbe 。它的目标是在两年内完成初稿,即到 2021 年 3 月。最终版本预计到 2024 年初。虽然标准草案尚未准备就绪,但所有已批准的功能都可以在最新版本的规范框架文档中找到 。
为了满足具有挑战性的时间表,该小组在两个分别关注 PHY 和 MAC 功能的特别小组中并行评估各种功能。尽管这样优化,但队列中的提交很多,等待时间超过几个月。为了加快标准开发过程,该小组同意选择一小组可在 2021 年发布的高优先级功能(第 1 版)。此类功能应以低复杂度提供高增益。该集应包括支持 320 MHz、4K-QAM、明显的 OFDMA 改进、多链路。反对此提议的主要问题与 PHY 和 MAC 更改的复杂性有关,这些更改将需要支持第 2 版推迟的功能。
与 Wi-Fi 7 相关的另一个重要问题是它与在相同免许可频段运行的蜂窝网络的 3GPP 技术共存。为了研究与 Wi-Fi 和蜂窝网络相关的共存问题,IEEE 802.11 成立了共存常设委员会 (Coex SC)。Coex SC的任务是与3GPP建立联系,建立同步工作。尽管开展了许多活动,甚至于 2019 年 7 月在维也纳与 3GPP 和 IEEE 802.11 参与者举行了联合研讨会,但尚未批准任何技术解决方案。对这种无果而终的活动的一个可能解释是,IEEE 802 和 3GPP 都不愿意改变自己的技术以使其与并发技术保持一致。因此,目前尚不清楚 Coex SC 内部讨论的哪些解决方案将成为 Wi-Fi 7 的一部分。
WiFi 7的七大创新?
11be 项目包含了非常雄心勃勃的目标,这些目标与更高的标称数据速率、更高的频谱效率、更好的干扰缓解和提供 RTA 支持有关。为了实现这些目标,802.11 工作组讨论了来自不同领域的大约 500 项提案,这些提案可以映射到 Wi-Fi 7 的七大创新之一。
1) EHT PHY
Wi-Fi 7 获准通过将 MU-MIMO 中的带宽和 SS 数量加倍来扩展先前 Wi-Fi 标准的 PHY,这将标称吞吐量提高了 2 × 2 = 4 倍。PHY 还通过利用 4K-QAM 引入了更高速率的 MCS,使标称吞吐量增加了 20%。因此,与 Wi-Fi 6 的 9.6 Gbps 相比,Wi-Fi 7 将提供高达 2×2 × 1.2 = 4.8 倍的标称数据速率。因此,Wi-Fi 7 的最大标称吞吐量为 9.6 Gbps × 4.8 ≈ 46 Gbps。此外,PHY 协议的革命性变化与以前的 PHY 标头的通用化和开发向前兼容的帧格式有关。
2) 具有 802 TSN 特性的 EDCA
为了支持 RTA,TGbe 检查了 IEEE 802 TSN 的主要发现,并讨论了如何改进 EDCA。标准委员会正在进行的讨论与退避程序、AC 以及数据包服务策略有关。
3) 增强型 OFDMA
在 11ax 中引入的 OFDMA 为优化资源分配提供了新的机会。但是在11ax中,OFDMA不够灵活。首先,它允许 AP 仅向客户端 STA 分配一个预定大小的资源单元 (RU)。其次,它不支持直接链接传输。这两个缺点都会降低频谱效率。此外,传统 OFDMA 缺乏灵活性会降低密集部署的性能并增加延迟,这对于 RTA 至关重要。TGbe 解决了这些 OFDMA 挑战。
4) 多链路操作
Wi-Fi 7 获得认可的革命性变化之一是原生支持多链路操作,这有利于巨大的数据速率和极低的延迟。虽然现代芯片组目前可以同时使用多个链路,但链路是独立的,这限制了这种操作的效率。11be 努力在链路之间找到这样的同步级别,以允许有效使用信道资源并且不会在密集部署中受到干扰。
5) 信道探测优化
宽信道中的高阶 MU-MIMO 和 OFDMA 要求设备交换大量信道状态信息。探测过程引起的大量开销消除了缩放 PHY 在理论上提供的增益。因此,人们非常关注可以减少信道探测开销的方法。
6) 提高频谱效率的高级 PHY 技术
在 TGbe 推出之前,802.11 工作组已经讨论了几种先进的 PHY 技术,这些技术应该可以在传输重试和相同或相反方向的同时传输的情况下显着提高频谱效率。尽管混合自动重传请求 (HARQ)、FD 操作和非正交多址接入 (NOMA) 在文献中得到广泛研究,但尚不清楚这些技术提供的增益是否足够高以补偿 必要的改变。在 Release 1 的工作期间,TGbe 专注于直截了当的高优先级功能,该小组对此毫不怀疑,社区有时间进一步评估 Wi-Fi 环境下的 HARQ、NOMA 和 FD。
7) 多AP协作
11be 引入的另一个重要创新是多 AP 协作。802.11 工作组主要关注附近 AP 之间的完全分布式协调。尽管许多供应商都有自己的企业 Wi-Fi 网络集中控制器,但此类控制器的能力受到配置长期参数和信道选择的限制。TGbe 讨论了附近 AP 之间更紧密的合作,包括协调调度、波束成形,甚至分布式 MIMO 系统。一些考虑的方法依赖于successive
interference constellation (SIC)。11be 将支持协调调度,但存在与更复杂方法相关的一定程度的不确定性。
写在最后
在文章中,原文作者还对WiFi 7的 EHT PHY、具有 802 TSN 特性的 EDCA、增强型 OFDMA、多链路操作、信道探测优化、提高频谱效率的高级 PHY 技术和多AP协作的潜在候选技术进行了普及。
在作者看来,802.11be 修正案是 Wi-Fi 长期成功故事中的下一个重要里程碑。它的核心特性与提供极高的吞吐量和支持实时应用程序有关 虽然标准的开发过程还处于初级的阶段,但我们已经可以勾勒出未来的技术并指出其优势和局限性以及未解决的问题,这需要社区的额外努力。
在文章中,作者介绍了 Wi-Fi 7 的七项重大创新,并详细描述了相关提案。但他们也强调。理论上,只有使用第一个创新:EHT PHY,才能实现更高的标称数据速率和更低的延迟。
然而,在实践中,由于未经许可的频谱、干扰和大量开销,仅 EHT PHY 无法为最终用户提供显着的吞吐量和延迟增益。这就是为什么除了 EHT PHY 之外,TGbe 还讨论了 Wi-Fi 7 的其他六项创新。
修改后的 EDCA 和 OFDMA 将为 RTA 提供支持。此外,OFDMA 将变得更加灵活以提高频谱效率。
在 Wi-Fi 标准中引入多链路操作增加了资源使用的灵活性,并为更高带宽利用率和更高吞吐量提供了一种补充方法。为最大限度地减少信道探测开销 tar 所做的大量努力为高效的大规模 MIMO Wi-Fi 系统打开了大门。
最后,TGbe 讨论了高级 PHY 方法,例如可以提高频谱效率的 HARQ、NOMA 和 FD,以及各种多 AP 协作方法。在后一组提案中,我们看到了另一种范式的转变,从通过在时间/频率/空间或功率上分离传输来减轻干扰到分布式大规模天线系统内的联合传输。虽然 TGbe 可能会推迟下一个 Wi-Fi 版本的许多高级 PHY 和多 AP 协作功能,但它们向我们展示了超越 Wi-Fi 7 的进一步演进的方向。
*免责声明:本文由作者原创。文章内容系作者个人观点,半导体行业观察转载仅为了传达一种不同的观点,不代表半导体行业观察对该观点赞同或支持,如果有任何异议,欢迎联系半导体行业观察。
今天是《半导体行业观察》为您分享的第3281内容,欢迎关注。
推荐阅读
半导体行业观察
『半导体第一垂直媒体』
实时 专业 原创 深度
识别二维码,回复下方关键词,阅读更多
晶圆|集成电路|设备|汽车芯片|存储|台积电|AI|封装
回复 投稿,看《如何成为“半导体行业观察”的一员 》
回复 搜索,还能轻松找到其他你感兴趣的文章!