其他
【研究进展】佛山科技学院黎永耀课题组:二维晶格量子液滴 | FOP
奔流向前的量子液滴
二维晶格体系下的新型基态和涡旋态孤子Boris A. Malomed1,21Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, and Center for Light–Matter Interaction, Tel Aviv University, P. O. B. 39040, Tel Aviv, Israel
2Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica, ChileE-mail: malomed@tauex.tau.ac.il理论和实验表明3维和准2维稳定量子液滴存在的可能性[6-13],为BEC的多维自局域(或称“孤子”)这一广泛的研究领域提供了新的重要支撑,因为在量子液滴出现之前只有很少几个实验能得到稳定的多维孤子[19,20]。不仅如此,最近有研究预言,稳定的3维[21]和准2维[22-27]量子液滴中还可以形成涡旋态,众所周知,稳定3维和2维涡旋孤子的预测和实现是一个相当有挑战性的问题[28]。与此问题相关,图1展示了涡旋孤子的局域密度的示意图。在该图中,当拓扑荷(绕数)S为1,2和3时,涡旋量子液滴是稳定的,而S=4时是不稳定的。注意孤子的总角动量M由S和总粒子数N [见(4)式]决定,即:M=SN. 近期发表于Frontiers of Physics的综述文章[29]简要回顾了3维和准2维下量子液滴实验和理论上的相关进展。综述主要讨论的是具有二体散射和偶极-偶极相互作用的凝聚体,理论部分则关注了包含涡旋的量子液滴的理论预言,这些理论的预言还未能被实验所实现。 还有一个手段能帮助众多2维和3维模型形成稳定的涡旋和非涡旋孤子。这个手段就是施加空间周期外势(或晶格势)[30,31]。实验中,这样的外势可以借由光晶格实现,即通过相对的两束激光在BEC中形成共振光场,进而给囚禁于其中的原子是施加一个空间上周期变化的力[1,32]。最近发表于Frontiers of Physics的文章“二维晶格量子液滴[33]”在此方向上迈出重要一步。该工作通过给方程(2)加上一个在x和y方向上都呈周期变化的外势
References
1. L. P. Pitaevskii and S. Stringari, Bose–Einstein Condensation, Oxford University Press, Oxford, 20032. S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of ultracold atomic Fermi gases, Rev. Mod. Phys. 80(4), 1215 (2008) https://doi.org/10.1103/RevModPhys.80.12153. B. Paredes, A. Widera, V. Murg, O. Mandel, S. Fölling, I. Cirac, G. V. Shlyapnikov, T. W. Hänsch, and I. Bloch, Tonks-Girardeau gas of ultracold atoms in an optical lattice, Nature 429(6989), 277 (2004) https://doi.org/10.1038/nature025304. T. Kinoshita, T. Wenger, and D. S. Weiss, Observation of a one-dimensional Tonks-Girardeau gas,Science 305(5687), 1125 (2004) https://doi.org/10.1126/science.11007005. H. Zhai, Degenerate quantum gases with spin–orbit coupling: A review, Rep. Prog. Phys. 78(2), 026001 (2015) https://doi.org/10.1088/0034-4885/78/2/0260016. D. S. Petrov, Quantum mechanical stabilization of a collapsing Bose–Bose mixture, Phys. Rev. Lett.115(15), 155302 (2015) https://doi.org/10.1103/PhysRevLett.115.1553027. D. S. Petrov and G. E. Astrakharchik, Ultradilute low-dimensional liquids, Phys. Rev. Lett. 117(10), 100401 (2016) https://doi.org/10.1103/PhysRevLett.117.1004018. C. R. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and L. Tarruell, Quantum liquid droplets in a mixture of Bose–Einstein condensates, Science 359(6373), 301 (2018) https://doi.org/10.1126/science.aao56869. P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell, Bright soliton to quantum droplet transition in a mixture of Bose–Einstein condensates, Phys. Rev. Lett. 120(13), 135301 (2018) https://doi.org/10.1103/PhysRevLett.120.13530110. G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F. Minardi, M. Modugno, G. Modugno, M. Inguscio, and M. Fattori, Self-bound quantum droplets in atomic mixtures, Phys. Rev. Lett. 120(23), 235301 (2018) https://doi.org/10.1103/PhysRevLett.120.23530111. G. Ferioli, G. Semeghini, L. Masi, G. Giusti, G. Modugno, M. Inguscio, A. Gallemí, A. Recati, and M. Fattori, Collisions of self-bound quantum droplets, Phys. Rev. Lett. 122(9), 090401 (2019) https://doi.org/10.1103/PhysRevLett.122.09040112. I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau, Observation of quantum droplets in a strongly dipolar Bose gas, Phys. Rev. Lett. 116(21), 215301 (2016) https://doi.org/10.1103/PhysRevLett.116.21530113. L. Chomaz, S. Baier, D. Petter, M. J. Mark, F. Wächtler, L. Santos, and F. Ferlaino, Quantum-fluctuation-driven crossover from a dilute Bose–Einstein condensate to a macrodroplet in a dipolar quantum fluid, Phys. Rev. X 6(4), 041039 (2016) https://doi.org/10.1103/PhysRevX.6.04103914. L. Bergé, Wave collapse in physics: Principles and applications to light and plasma waves, Phys. Rep. 303(5-6), 259 (1998) https://doi.org/10.1016/S0370-1573(97)00092-615. P. Zin, M. Pylak, T. Wasak, M. Gajda, and Z. Idziaszek, Quantum Bose-Bose droplets at a dimensional crossover, Phys. Rev. A 98, 051603(R) (2018) https://doi.org/10.1103/PhysRevA.98.051603 16. T. Ilg, J. Kumlin, L. Santos, D. S. Petrov, and H. P. Büchler, Dimensional crossover for the beyond-mean-field correction in Bose gases, Phys. Rev. A 98, 051604(R) (2018) https://doi.org/10.1103/PhysRevA.98.051604 17. G. E. Astrakharchik and B. A. Malomed, Dynamics of one-dimensional quantum droplets, Phys. Rev. A 98(1), 013631 (2018) https://doi.org/10.1103/PhysRevA.98.01363118. M. Tylutki, G. E. Astrakharchik, B. A. Malomed, and D. S. Petrov, Collective excitations of a one-dimensional quantum droplet, Phys. Rev. A 101, 051601(R) (2020) https://doi.org/10.1103/PhysRevA.101.051601 19. B. A. Malomed, Multidimensional solitons: Well-established results and novel findings, Eur. Phys. J. Spec. Top. 225(13-14), 2507 (2016) https://doi.org/10.1140/epjst/e2016-60025-y20. Y. Kartashov, G. Astrakharchik, B. Malomed, and L. Torner, Frontiers in multidimensional self-trapping of nonlinear fields and matter, Nat. Rev. Phys. 1(3), 185 (2019) https://doi.org/10.1038/s42254-019-0025-721. Y. V. Kartashov, B. A. Malomed, L. Tarruell, and L. Torner, Three-dimensional droplets of swirling superfluids, Phys. Rev. A 98(1), 013612 (2018) https://doi.org/10.1103/PhysRevA.98.01361222. Y. Li, Z. Luo, Y. Liu, Z. Chen, C. Huang, S. Fu, H. Tan, and B. A. Malomed, Two-dimensional solitons and quantum droplets supported by competing self- and cross-interactions in spin-orbit-coupled condensates, New J. Phys. 19(11), 113043 (2017) https://doi.org/10.1088/1367-2630/aa983b23. Y. Li, Z. Chen, Z. Luo, C. Huang, H. Tan, W. Pang, and B. A. Malomed,Two-dimensional vortex quantum droplets, Phys. Rev. A 98(6), 063602 (2018) https://doi.org/10.1103/PhysRevA.98.06360224. Y. V. Kartashov, B. A. Malomed, and L. Torner, Metastability of quantum dropletclusters, Phys. Rev. Lett. 122(19), 193902 (2019) https://doi.org/10.1103/PhysRevLett.122.19390225. X. Zhang, X. Xu, Y. Zheng, Z. Chen, B. Liu, C. Huang, B. A. Malomed, and Y. Li, Semidiscrete quantum droplets and vortices, Phys. Rev. Lett. 123(13), 133901 (2019) https://doi.org/10.1103/PhysRevLett.123.13390126. Y. V. Kartashov, B. A. Malomed, and L. Torner, Structured hetero-symmetric quantum droplets,Phys. Rev. Research 2(3), 033522 (2020) https://doi.org/10.1103/PhysRevResearch.2.03352227. E. Shamriz, Z. Chen, and B. A. Malomed, Suppression of the quasi-two-dimensional quantum collapse in the attraction field by the Lee-Huang-Yang effect, Phys. Rev. A 101(6), 063628 (2020) https://doi.org/10.1103/PhysRevA.101.06362828. B. A. Malomed, Vortex solitons: Old results and new perspectives, Physica D 399, 108 (2019) https://doi.org/10.1016/j.physd.2019.04.00929. Z. Luo, W. Pang, B. Liu, Y. Li, and B. A. Malomed, A new form of liquid matter: Quantum droplets,Front. Phys. 16(3), 32501 (2021) http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-1020-230. B. B. Baizakov, B. A. Malomed, and M. Salerno, Multidimensional solitons inperiodic potentials,Europhys. Lett. 63(5), 642 (2003) https://doi.org/10.1209/epl/i2003-00579-431. J. Yang and Z. H. Musslimani, Fundamental and vortex solitons in a two-dimensional optical lattice, Opt. Lett. 28(21), 2094 (2003) https://doi.org/10.1364/OL.28.00209432. O. Morsch and M. Oberthaler, Dynamics of Bose-Einstein condensates in optical lattices, Rev. Mod. Phys. 78(1), 179 (2006) https://doi.org/10.1103/RevModPhys.78.17933. Y. Zheng, S. Chen, Z. Huang, S. Dai, B. Liu, Y. Li, and S. Wang, Quantum droplets in two-dimensional optical lattices, Front. Phys. 16(2), 22501 (2021) http://journal.hep.com.cn/fop/EN/10.1007/s11467-020-1011-334. Z. Zhou, X. Yu, Y. Zou, and H. Zhong, Dynamics of quantum droplets in aone-dimensional optical lattice, Commun. Nonlinear Sci. Numer. Simul. 78, 104881 (2019) https://doi.org/10.1016/j.cnsns.2019.10488135. L. Dong, W. Qi, P. Peng, L. Wang, H. Zhou, and C. Huang, Multi-stable quantum droplets in optical lattices, Nonlinear Dyn. 102(1), 303 (2020) https://doi.org/10.1007/s11071-020-05967-y36. I. Morera, G. E. Astrakharchik, A. Polls, and B. Juliá-Díaz, Quantum droplets of bosonic mixtures in a one-dimensional optical lattice, Phys. Rev. Research 2, 022008(R) (2020) https://doi.org/10.1103/PhysRevResearch.2.022008 37. R. A. Vicencio and M. Johansson, Discrete mobility in two-dimensional arrays with saturable nonlinearity, Phys. Rev. E 73, 046602 (2006) https://doi.org/10.1103/PhysRevE.73.04660238. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Soliton shape and mobility controlin optical lattices,Prog. Opt. 52, 63 (2009) https://doi.org/10.1016/S0079-6638(08)00004-839. Y. V. Kartashov, V. A. Vysloukh, and L. Torner, Rotary solitons in Bessel optical lattices, Phys. Rev. Lett. 93(9), 093904 (2004) https://doi.org/10.1103/PhysRevLett.93.093904扫码下载PDF全文:
Y. Zheng, S. Chen, Z. Huang, S. Dai, B. Liu, Y. Li, and S. Wang, Quantum droplets in two-dimensional optical lattices, Front. Phys. 16(2), 22501 (2021)
Z. Luo, W. Pang, B. Liu, Y. Li, and B. A. Malomed, A new form of liquid matter: Quantum droplets, Front. Phys. 16(3), 32501 (2021)
B. A. Malomed, The family of quantum droplets keeps expanding, Front. Phys. 16(2), 22504 (2021)
可复制此链接至浏览器查看详情:http://journal.hep.com.cn/fop/EN/collection/showCollection.do?id=191
可复制此链接至浏览器查看详情:http://journal.hep.com.cn/fop/EN/collection/showCollection.do?id=206
可复制此链接至浏览器查看详情:http://journal.hep.com.cn/fop/EN/collection/showCollection.do?id=201
可复制此链接至浏览器查看详情:http://journal.hep.com.cn/fop/EN/collection/showCollection.do?id=194
可复制此链接至浏览器查看详情:http://journal.hep.com.cn/fop/EN/collection/showCollection.do?id=193
About Frontiers of Physics
文章来源“物理学前沿FOP刊”公众号
欢迎大家提供各类学术会议或学术报告信息,以便广大科研人员参与交流学习。