量子算法Deutsch–Jozsa algorithm | 中科院理论物理所
The following article is from 中国科学院理论物理研究所 Author 周鹏飞
作者简介
周鹏飞 理论物理所18级在读博士生,导师为张潘研究员,研究方向为统计物理,对量子计算感兴趣。
量子计算凭借其并行计算的特性渐渐成为研究和发展的热点,量子算法的设计自然是必不可少的环节。这里我们介绍一个著名的量子算法:Deutsch–Jozsa algorithm,它最早由David Deutsch和Richard Jozsa在1992年提出[1], 后来由Richard Cleve,Artur Ekert, Chiara Macchiavello和Michele Mosca于1998年改进[2]。尽管这个量子算法是针对于一个几乎没有实用价值的问题,但是它是第一个向我们展示量子计算相比经典计算拥有指数加速性能的量子算法,是一个非常优美的工作,能够帮助我们理解量子算法,而且这个算法也启发了其他量子算法的发明。学会这个算法不需要非常高深的数学和物理知识,只需要简单的线性代数知识和量子力学的基础概念。
Deutsch–Jozsa algorithm想要解决的问题是这样描述的:对于一个布尔函数 ,它的定义域是 , 可以看成一个长度为 的向量,其中向量的每个元素可以取0或者1, 我们也叫 为一个长度为 的比特串;值域是 ; 的形式有两种选择,它可以是一个常函数,就是对于任意的输入 , 都是0或者1;也可以是一个平衡函数,就是在 的 的所有可能取值中,有一半 的函数值为 ,一半 的函数值为 ,问什么样的算法可以最快知道 是一个常函数还是一个平衡函数?显然的对于经典计算来说,我们可以喂给 个不同的 就能知道 是一个常函数还是一个平衡函数,当然我们可以利用并行计算同时计算这 个 的函数值,但是会需要更多的计算资源,而Deutsch–Jozsa algorithm通过利用量子叠加态的性质可以巧妙的判断 是一个常函数还是一个平衡函数,有兴趣的童靴可以先自己尝试想出一个量子算法解决这个问题,如果想出好的算法给自己一个大大的奖励哦!
对于一个经典的比特,一般会用电路中的高低电平表示,高电平表示 态,低电平表示 态,显然的一个经典比特要么处于高电平表示 态,要么处于低电平表示 态;但是在量子世界中,奇怪的性质出现了,假如在量子世界中我们用一个电子表示一个量子的比特,相应的电子自旋向下表示 态(这里是狄拉克表示,它是量子力学中的一个标准表示),自旋向上表示 态,那么这个量子比特不仅仅可以处于 或者 态,还可以处于它们俩的叠加态比如 ,其中的 是为了满足量子态的归一化性质,可以解释为当我们测量这个量子比特时,它处于态的概率是 ,处于 态的概率是 ;可以将 态视为列向量 ( 代表转置),将 态视为列向量 ,对应的叠加态 。正是因为叠加态的性质,量子计算可以实现并行计算,进而实现指数加速。我们先引入量子门的概念,当然了,量子门和经典的逻辑门有相似的性质,但有本质的区别,这里暂不讨论,我们先介绍一个与经典的非门相对应的单比特的量子非门,它就是泡利矩阵 ,这里用 标记。 假如我们把它作用到前面讨论的叠加态
我们再介绍两个后面我们会用到的量子门,一个是单比特Hadamard门,一个是多比特控制非门。单比特Hadamard门很简单,它的数学表达式为:
我们也叫类似这样的量子门作用在量子比特上的结构叫做量子电路;
多比特控制非门的结构如图2,这个量子门我们记为
如果你阅读到这里,那么恭喜你已经接近尾声了,我们已经将Deutsch–Jozsa algorithm 所用到的两个门都介绍了,只需要把这两个门作用在量子态上,我们马上就能看到Deutsch–Jozsa algorithm 的威力了。下面直接给出Deutsch–Jozsa algorithm 对应的量子电路如图3, 量子电路从初态
对于一个布尔函数
参考文献
[1] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum computation. Proceedings
of the Royal Society of London. Series A: Mathematical and Physical Sciences, 439(1907):553–558,
1992.
[2] Richard Cleve, Artur Ekert, Chiara Macchiavello, and Michele Mosca. Quantum algorithms revisited.
Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences,
454(1969):339–354, 1998.
[3] Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.
编辑:黄琦
为满足更多科研工作者的需求,蔻享平台开通了各科研领域的微信交流群。进群请添加微信18019902656(备注您的科研方向)小编拉您入群哟! 蔻享网站www.koushare.com已开通自主上传功能,期待您的分享!
欢迎大家提供各类学术会议或学术报告信息,以便广大科研人员参与交流学习。
联系人:李盼 18005575053(微信同号)
欢迎大家提供各类学术会议或学术报告信息,以便广大科研人员参与交流学习。