7张图揭晓RocketMQ存储设计的精髓
The following article is from 中间件兴趣圈 Author 丁威
RocketMQ作为一款基于磁盘存储的中间件,具有无限积压能力,并提供高吞吐、低延迟的服务能力,其最核心的部分必然是它优雅的存储设计。
温馨提示:本文节选自新上市《RocketMQ技术内幕》第二版本,一个最大的改变就是在进入源码分析之前,首先通过图文的方式,提炼出RocketMQ的核心工作机制,降低源码阅读的难度,引发思考。
1、存储概述
RocketMQ存储的文件主要包括Commitlog文件、ConsumeQueue文件、Index文件。
RocketMQ将所有主题的消息存储在同一个文件中,确保消息发送时按顺序写文件,尽最大能力确保消息发送的高可用性与高吞吐量。
但消息中间件一般都是基于主题的订阅与发布模式,消息消费时必须按照主题进行帅选消息,显然从Commitlog文件中按照topic去筛选消息会变得及其低效,为了提高根据主题检索消息的效率,RocketMQ引入了ConsumeQueue文件,俗成消费队列文件。
关系型数据库可以按照字段属性进行记录检索,作为一款主要面向业务开发的消息中间件,RocketMQ也提供了基于消息属性的检索能力,底层的核心设计理念是为Commitlog文件建立哈希索引,并存储在Index文件中。
在RocketMQ中顺序写入到Commitlog文件后,ConsumeQueue与Index文件都是异步构建的,其数据流向图如下:
2、存储文件组织方式
RocketMQ在消息写入过程中追求极致的磁盘顺序写。所有主题的消息全部写入一个文件,即Commitlog文件。所有消息按抵达顺序依次追加到文件中,消息一旦写入,不支持修改。Commitlog文件的具体布局如下图所示:
正如关系型数据会为每一条数据引入一个ID字段,在基于文件编程的模型中,也会为一条消息引入一个身份标志:消息物理偏移量,即消息存储在文件的起始位置。
正是有了物理偏移量的概念,Commitlog的文件名命名也是极具技巧性,使用了存储在该文件的第一条消息在整个Commitlog文件组中的偏移量来命名,例如第一个 Commitlog文件为 0000000000000000000,第二个文件为00000000001073741824,然后依次类推。
这样做的好处是给出任意一个消息的物理偏移量,例如消息偏移量为 73741824,可以通过二分法进行查找,快速定位这个文件在第一个文件中,然后用消息的物理偏移量减去该文件的名称所得到的差值,就是在该文件中的绝对地址。
Commitlog文件的设计理念是追求极致的消息写,但我们知道消息消费模型是基于主题的订阅机制,即一个消费组是消费特定主题的消息。如果根据主题从commitlog文件中检索消息,我们会发现这绝不是一个好主意,只能从文件的第一条消息逐条检索,其性能可想而知,故为了解决基于topic的消息检索问题,RocketMQ引入了consumequeue文件,consumequeue的结构如下图所示。
Consumequeue的设计极具技巧,每个条目长度固定(8字节commitlog物理偏移量、4字节消息长度、8字节tag hashcode)。
这里不是存储tag的原始字符串,而选择存储hashcode,目的就是确保每个条目的长度固定,可以使用访问类似数组下标的方式快速定位条目,极大地提高了ConsumeQueue文件的读取性能。
试想一下,消息消费者根据topic、消息消费进度(consumeuqe逻辑偏移量),即第几个Consumeque条目,这样的消费进度去访问消息的方法为使用逻辑偏移量logicOffset * 20即可找到该条目的起始偏移量(consumequeue文件中的偏移量),然后读取该偏移量后20个字节即得到一个条目,无须遍历consumequeue文件。
RocketMQ与Kafka相比具有一个强大的优势,就是支持按消息属性检索消息,引入consumequeue文件解决了基于topic查找的问题,但如果想基于消息的某一个属性查找消息,consumequeue文件就无能为力了。
RocketMQ引入了Index索引文件,实现基于文件的哈希索引。IndexFile的文件存储结构如下图所示:
即建立了索引Key的hashcode与物理偏移量的映射关系,根据key先快速定义到commitlog文件,关于Hash索引具体到工作机制,可以参考笔直《RocketMQ技术内幕》第二版4.5.3节的详细介绍。
3、顺序写
基于磁盘的读写,提高其写入性能的另外一个设计原理是磁盘顺序写。
磁盘顺序写广泛用在基于文件的存储模型中,大家不妨思考一下 MySQL Redo 日志的引入目的,我们知道在 MySQL InnoDB 的存储引擎中,会有一个内存 Pool,用来缓存磁盘的文件块,当更新语句将数据修改后,会首先在内存中进行修改,然后将变更写入到 redo 文件(刷写到磁盘),然后定时将InnoDB内存池中的数据刷写到磁盘。
4、内存映射机制
虽然基于磁盘的顺序写可以极大提高IO的写效率,但如果基于文件的存储采用常规的JAVA文件操作API,例如 FileOutputStream等,其性能提升会很有限,RocketMQ引入了内存映射,将磁盘文件映射到内存中,以操作内存的方式操作磁盘,性能又提升了一个档次。
在JAVA中可通过FileChannel的map方法创建内存映射文件。
在Linux服务器中由该方法创建的文件使用的就是操作系统的pagecache,即页缓存。
Linux操作系统中的内存使用策略时会尽可能地利用机器的物理内存,并常驻内存中,就是所谓的页缓存。在操作系统的内存不够的情况下,采用缓存置换算法,例如LRU将不常用的页缓存回收,即操作系统会自动管理这部分内存。
如果RocketMQ Broker进程异常退出,存储在页缓存中的数据并不会丢失,操作系统会定时将页缓存中的数据持久化到磁盘,做到数据安全可靠。不过如果是机器断电等异常情况,存储在页缓存中的数据就有可能丢失。
5、灵活多变的刷盘策略
有了顺序写和内存映射的加持,RocketMQ的写入性能得到了极大的保证,但凡事都有利弊,引入了内存映射和页缓存机制,消息会先写入到页缓存,此时消息并没有真正持久化到磁盘。那么broker收到客户端的消息发送后,是存储到页缓存中就直接返回成功,还是要持久化到磁盘中才返回成功呢?
这是一个“艰难”的抉择,是在性能与消息可靠性方面进行权衡。为此,RocketMQ提供了多种策略:同步刷盘、异步刷盘。
5.1 同步刷盘
同步刷盘在RocketMQ的实现中成为组提交,并不是每一条消息都必须刷盘。其设计理念如图所示:
5.2 异步刷盘
同步刷盘的优点是能保证消息不丢失,即向客户端返回成功就代表这条消息已被持久化到磁盘,即消息非常可靠,但这是以牺牲写入响应延迟性能为代价的,由于RocketMQ的消息是先写入 pagecache,故消息丢失的可能性较小,如果能容忍一定几率的消息丢失,可以考虑使用异步刷盘。
异步刷盘指的是broker将消息存储到pagecache后就立即返回成功,然后开启一个异步线程定时执行FileChannel的forece方法,将内存中的数据定时刷写到磁盘,默认间隔为500ms。
6、内存级读写分离
RocketMQ为了降低pagecache的使用压力引入了transientStorePoolEnable机制,即内存级别的读写分离机制。
默认情况下RocketMQ将消息写入pagecache,消息消费时从pagecache中读取,这样在高并发时pagecache的压力会比较大,容易出现瞬时broker busy,故RocketMQ还引入了transientStorePoolEnable,将消息先写入堆外内存并立即返回,然后异步将堆外内存中的数据提交到pagecache,再异步刷盘到磁盘中。其工作机制如下图所示:
该方案的优点是消息是直接写入堆外内存,然后异步写入pagecache。相比每条消息追加直接写入pagechae,其最大的优势是将消息写入pagecache操作批量化。
该方案的缺点是如果由于某些意外操作导致Broker进程异常退出,那么存储在堆外内存的数据会丢失,但如果是放入pagecache,broker异常退出并不会丢失消息。