查看原文
其他

【好文推荐】一种充水式潜水电机辅助槽设计方法

CES TEMS编辑部 CES电机与系统学报 2022-09-26

中国电工技术学会活动专区


CES Conference





一种充水式潜水电机辅助槽设计方法

A Design Method of theRotor Auxiliary Slot for the Water-filled Submersible InductionMotors

Author: JiaxinLi, Jingwen Yan,Chong Di, Xiaohua Bao, and Qinglong Zhu

DOI: 10.30941/CESTEMS.2022.00006

https://ieeexplore.ieee.org/document/9745897



01

摘要


  本文针对充水式潜水感应电机的电磁振动问题,提出了在转子侧开辅助槽的方法,削弱转子磁导齿谐波。通过分析充水式潜水电机电磁振动的研究现状和电机气隙磁场的组成,提出了转子侧辅助槽主要通过改变电机气隙磁导来影响气隙磁场谐波的观点。建立了充水式潜水电机气隙磁导的数学模型,模拟了辅助槽对气隙磁导的影响。并对数学模型的参数化分析,模拟了气隙磁导随辅助槽尺寸的变化。同时,利用二维傅里叶变换对气隙磁导波形进行分解,分析了气隙磁导谐波随辅助槽尺寸的变化规律。最后,建立了带辅助槽的充水式潜水电机的有限元仿真模型,并对电机气隙磁通密度、径向电磁力以及各项电磁性能进行了分析。


02

创新点


  • 引入辅助槽结构降低充水式潜水电机电磁振动

  • 通过充水式潜水电机气隙磁导的数学模型,模拟了辅助槽对气隙磁导的影响。


03

主要内容

  

  • 基通过对气隙磁场的分析得出,转子侧辅助槽会改变气隙磁导的辅助,也即主要影响下式右侧第四项。

  • 在转子侧内部开辅助槽,结构如图1所示。

图1. 转子侧辅助槽的结构示意图

  • 并将闭口槽等效为开口槽,等效过程和单个槽的数学模型如图2所示。

图2. 带辅助槽的转子结构图及气隙磁导数学模型

  • 假设定子侧光滑,建立一对极下的气隙磁导模型,并对气隙磁导波形傅里叶分解,结果如图三所示。

图3. 转子侧带辅助槽的气隙磁导率波形图及二维傅里叶分解结果

  • 建立包含辅助槽结构的充水式潜水电机的有限元仿真模型

4. 转子侧开辅助槽的电机有限元仿真模型

  • 对辅助槽的尺寸参数尽行参数化分析,并对气隙磁导波形和气隙磁密进行二维傅里叶分解,谐波含量的变化如图5图6所示。THD曲线如图7所示。

图5. 气隙磁导谐波随辅助槽尺寸大小的变化曲线

图6. 转子一阶齿谐波和二阶齿谐波随辅助槽尺寸的变化

图7. 气隙磁导波形的THD曲线和气隙磁密的THD曲线

  • 绘制了电机转矩随辅助槽尺寸的变化曲线,如图8所示

图8. 电机的输出转矩随辅助槽尺寸的变化

  • 根据电机径向磁场密度计算径向电磁。结果如图9所示,转子侧开辅助槽后,电机的径向电磁力降低了28.4%。

图9. 有无辅助槽时电机的径向电磁力

04

结论


对充水式潜水电机的气隙磁场进行了详细的理论分析,辅助槽对电机气隙磁场的影响主要是通过改变电机的气隙磁导削弱气隙磁场中的谐波。

建立气隙磁导的数学模型,并采用方波模拟电机的气隙磁导波形。通过对数学模型的参数化分析,得出了辅助槽可以有效减小气隙磁导的谐波含量的结论,随着辅助槽尺寸的增大,21阶磁导谐波减小,42阶磁导谐波增大,整体谐波含量先增大后减小。

通过有限元仿真验证了辅助槽对电机气隙磁场的影响并对电机的电磁性能进行了分析,分析结果表明:随着辅助槽尺寸的增大,电机气隙磁场中的转子一阶磁导齿谐波(对应21阶磁导谐波)减小,二阶磁导齿谐波分量(对应42阶磁导谐波)增大,整体谐波含量先减小后增大。两种放法的结果吻合成度较高,证明了数学模型的有效性。

辅助槽同时对电机的电磁性能带来了很大的影响,随着辅助槽尺寸的增大,转子齿磁通密度的饱和程度也越来越高,这也导致了电流的增大。电流的增加进一步导致了电机铜损耗的增加。同时,随着电机辅助槽尺寸的增大,电机气隙磁场的谐波含量减小,降低了电机的谐波产生的附加损耗。至于电机的转矩性能,变化不大。

最后,对电机径向电磁力的分析也证明了辅助槽可以有效地降低电机的电磁振动,电机的径向电磁力降低了28.4%







引用本文







J. Li, J. Yan, C. Di, X. Bao and Q. Zhu, "A Design Method of the Rotor Auxiliary Slot for the Water-filled Submersible Induction Motors," in CES Transactions on Electrical Machines and Systems, vol. 6, no. 1, pp. 37-45, March 2022, doi: 10.30941/CESTEMS.2022.00006.








本文作者








  JiaxinLi (Non-member) was born in China. He received the B. Eng. Degree in ElectricalEngineering and its Automation from Hefei University of Technology, Hefei, China, in 2019. Heis currently working toward a master’s degree in School of ElectricalEngineering and Automation, Hefei University of Technology, Hefei, China.

His currentresearch interests include motor design, finite-element analysis, and Simulation and analysis of the temperature field.

 Jingwen Yan (Non-member) Her gottenthe B.Eng. degree in material science from Soochow College, Suzhou, China, in 2018. She is rightnow seeking after the Ph.D. degree with theSchool of Electrical Designing and Computerization,Hefei College of Innovation,Hefei, China..

Hercurrent research interests include motorelectromagnetic design, iron loss calculation and analysis, motor harmonicanalysis.


  Chong Di (Non-member) was born in China. He received the B. Eng. and M. Eng. degrees from Hefei University ofTechnology, Hefei, China, in 2014 and 2017, respectively, and the Doctor ofScience (D.Sc.) degree from Lappeenranta-Lahti University of Technology (LUT),Finland in 2020, all in electrical engineering. He is currently a researcher inthe Department of Electrical Engineering, Hefei University of Technology,Hefei, China.

Hisresearch mainly concerns high-speed electrical machines and modelling ofelectrical machines on the open-source platform.


  Xiaohua Bao (Member, IEEE) was born in China. He received hisB.Eng., M.Eng., and Ph.D. degrees in electrical engineering from the HefeiUniversity of Technology, Hefei, China, in 1996, 2002, and 2008, respectively.He joined the School of Electrical Engineering and Automation, Hefei Universityof Technology, where he became a Professor in 2012. He was a Visiting Scholarwith the Virginia Polytechnic Institute and State University, Blacksburg, VA,United States.

 His current research interests include motor design,magnetic field analysis, and finite-element analysis.


  Qinglong Zhu (Non-member) was born in China. He received the B. Eng. Degreein Electrical Engineering and its Automation from Hefei University ofTechnology, Hefei, China, in 1982. He is currently thechairman of Hefei Hengda Jianghai Pump Co., Ltd, Hefei, China.

His current research interestsinclude the electric pump technology of the large diving motor and theintegrated automation system of the pump station.


下载论文PDF版,请点击左下角“阅读原文”,访问期刊网站。



推荐阅读

【征文延期通知】High Performance Linear Machines and Drives

第十届电工技术前沿问题学术论坛征文通知(第一轮)

【联合征稿】High Torque Performance Machine Systems

抢先看|CES TEMS 2022年第1期目次及摘要第十七届中国电工技术学会学术年会征文通知(第一轮)

关于第一届高校电气电子工程创新大赛(西南赛区)的通知(第一轮)

关于第一届高校电气电子工程创新大赛(东北赛区)的通知(第一轮)



中国电工技术学会
新媒体平台




学会官方微信

电工技术学报

CES电气



学会官方B站

CES TEMS

今日头条号



学会科普微信

新浪微博

抖音号


联系我们

《CES TEMS》: 010-63256823

邮箱:cestems@126.com



《电工技术学报》:010-63256949/6981

邮箱:dgjsxb@vip.126.com



《电气技术》:010-63256943

邮箱:dianqijishu@126.com



编务:010-63256994;订阅:010-63256817

广告合作:010-63256867/6838

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存