Linux schedule 之 Cgroup
作者简介
伟林,中年码农,从事过电信、手机、安全、芯片等行业,目前依旧从事Linux方向开发工作,个人爱好Linux相关知识分享,个人微博CSDN pwl999,欢迎大家关注!
阅码场付费会员专业交流群
会员招募:各专业群会员费为88元/季度,权益包含群内提问,线下活动8折,全年不定期群技术分享(普通用户直播免费,分享后每次点播价为19元/次),有意加入请私信客服小月(小月微信号:linuxer2016)
专业群介绍:
彭伟林-阅码场内核性能与稳定性本群定位内核性能与稳定性技术交流,覆盖云/网/车/机/芯领域资深内核专家,由阅码场资深讲师彭伟林主持。甄建勇-Perf Monitor&Perf Counter
本群定位Perf、cache和CPU架构技术交流,覆盖云/网/车/机/芯领域资深用户,由阅码场资深讲师甄建勇主持。
邓世强-Xenomai与实时优化
本群定位Xenomai与实时优化技术交流,覆盖云/网/车/机/芯领域资深用户,由阅码场资深讲师邓世强和彭伟林共同主持。
周贺贺-Tee和ARM架构
本群定位Tee和ARM架构技术交流,覆盖云/网/车/机/芯领域资深用户,由阅码场资深讲师周贺贺主持。
✦
✦
Q
学员问:我最近在看k8s对cgroup的管理部分,对于cfs对cgroup的调度有些疑惑。想搞明白cgroup里面的 period、quota是如何影响cfs的调度的
A
伟林老师给出如下文章进行解答
1.Cgroup
1.1、cgroup概念
mount -t cgroup -o cpu,cpuset cpu&cpuset /dev/cpu_cpuset_test
那么/dev/cpu_cpuset_test文件夹下就有一系列的cpu、cpuset cgroup相关的控制节点,tasks文件中默认加入了所有进程到这个cgroup中。可以继续创建子文件夹,子文件夹继承了父文件夹的结构形式,我们可以给子文件夹配置不同的参数,把一部分进程加入到子文件夹中的tasks文件当中,久可以实现分开的cgroup控制了。
关于cgroup的结构有以下规则和规律:
1、cgroup有很多subsys,我们平时接触到的cpu、cpuset、cpuacct、memory、blkio都是cgroup_subsys;
2、一个cgroup hierarchy,就是使用mount命令挂载的一个cgroup文件系统,hierarchy对应mount的根cgroup_root;
3、一个hierarchy可以制定一个subsys,也可以制定多个subsys。可以是一个subsys,也可以是一个subsys组合;
4、一个subsys只能被一个hierarchy引用一次,如果subsys已经被hierarchy引用,新hierarchy创建时不能引用这个subsys;唯一例外的是,我们可以创建和旧的hierarchy相同的subsys组合,这其实没有创建新的hierarchy,只是简单的符号链接;
5、hierarchy对应一个文件系统,cgroup对应这个文件系统中的文件夹;subsys是基类,而css(cgroup_subsys_state)是cgroup引用subsys的实例;比如父目录和子目录分别是两个cgroup,他们都要引用相同的subsys,但是他们需要不同的配置,所以会创建不同的css供cgroup->subsys[]来引用;
6、一个任务对系统中不同的subsys一定会有引用,但是会引用到不同的hierarchy不同的cgroup即不同css当中;所以系统使用css_set结构来管理任务对css的引。如果任务引用的css组合相同,那他们开源使用相同的css_set;
7、还有cgroup到task的反向引用,系统引入了cg_group_link结构。这部分可以参考Docker背后的内核知识——cgroups资源限制一文的描述,如下图的结构关系:
cgroup数据结构之间的关系
1、subsys是一组基类(cpu、blkio),css(cgroup_subsys_state)是基类的实例化。
2、cgroup的一组css的集合。
3、hierarchy是多个cgoup的组合,它决定cgroup中能创建哪些subsys的css。hierarchy可以任意引用几种subsys,但是一个subsys只能被一个hierarchy引用。如果一个hierarchy已经引用某个subsys,那么其他hierarchy就不能再引用这个subsys了。hierarchy对应cgroupfs_root数据结构。
4、一旦hierarchy确定了subsys,那么它下面的cgroup只能创建对应的css实例。一个subsys只能存在于某个hierarchy中,hierarchy下的多个cgroup可以创建这个subsys对应的多个css。
5、hierarchy、cgroup、css三者还使用文件系统来表示层次关系:hierarchy是文件系统挂载点,cgroup是文件夹,css是文件夹中的文件。css的值,以及兄弟和父子关系,表示了subsys资源配额的关系。
6、cgoup是为了划分资源配额,配置的主体是进程task。每个task在每一类别的subsys上都有配额,所以每个task在每个类别的subsys上有一个唯一的css与之关联。
7、进程和css是一对多(1 x N)的关系。而系统中的多个进程和多个css,是多对多(M x N)的关系。为了收敛这种多对多的关系,系统把所有css属性都相同的一组进程放在一个css_set当中,把多个css放在一个cgroup当中,这样还是多对多但是已经收敛(M/a x N/b)。css_set根据属性组合,存入css_set_table当中。
8、css_set代表a个css属性相同的进程,cgroup代表引用的b个subsys。多对多的关系从task vs css的(M x N),收敛到css_set vs cgroup的(M/a x N/b)。为了进一步简化css_set和cgroup之间多对多关系的双向查找,引入了cg_group_link数据结构:
task_struct通过->cgroup成员找到css_set结构,css_set利用->tasks链表把所有css属性相同的进程链接到一起。
dir | descript |
css_set → cgroup | css_set的->cgrp_links链表上挂载了这组css相关cgroup对应的cg_cgroup_link,通过cg_cgroup_link->cgrp找到cgroup,再通过cgroup->subsys[]找到css。 |
cgroup → css_set | cgroup的->cset_links链表上挂载了所有指向本cgoup的task对应的cg_cgroup_link,通过cg_cgroup_link->cset找到css_set,再通过css_set->tasks找到所有的task_struct。 |
9、还有一条task_struct → cgroup 的通路:
路径:task_struct->cgroup → css_set->subsys[] → cgroup_subsys_state->cgroup → cgroup
1.2、代码分析
1、"/proc/cgroups"
subsys的链表:for_each_subsys(ss, i)
一个susbsys对应一个hierarchy:ss->root
一个hierarchy有多少个cgroup:ss->root->nr_cgrps
# ount -t cgroup -o freezer,debug bbb freezer_test/
# cat /proc/cgroups
#subsys_name hierarchy num_cgroups enabled
cpuset 4 6 1
cpu 3 2 1
cpuacct 1 147 1
schedtune 2 3 1
freezer 6 1 1
debug 6 1 1
static int proc_cgroupstats_show(struct seq_file *m, void *v)
{
struct cgroup_subsys *ss;
int i;
seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
/*
* ideally we don't want subsystems moving around while we do this.
* cgroup_mutex is also necessary to guarantee an atomic snapshot of
* subsys/hierarchy state.
*/
mutex_lock(&cgroup_mutex);
for_each_subsys(ss, i)
seq_printf(m, "%s\t%d\t%d\t%d\n",
ss->legacy_name, ss->root->hierarchy_id,
atomic_read(&ss->root->nr_cgrps),
cgroup_ssid_enabled(i));
mutex_unlock(&cgroup_mutex);
return 0;
}
2、"/proc/pid/cgroup"
每种subsys组合组成一个新的hierarchy,每个hierarchy在for_each_root(root)中创建一个root树;
每个hierarchy顶层目录和子目录都是一个cgroup,一个hierarchy可以有多个cgroup,对应的subsys组合一样,但是参数不一样
cgroup_root自带一个cgroup即root->cgrp,作为hierarchy的顶级目录
一个cgroup对应多个subsys,使用cgroup_subsys_state类型(css)的cgroup->subsys[CGROUP_SUBSYS_COUNT]数组去和多个subsys链接;
一个cgroup自带一个cgroup_subsys_state即cgrp->self,这个css的作用是css->parent指针,建立起cgroup之间的父子关系;
css一个公用结构,每个subsys使用自己的函数ss->css_alloc()分配自己的css结构,这个结构包含公用css + subsys私有数据;
每个subsys只能存在于一个组合(hierarchy)当中,如果一个subsys已经被一个组合引用,其他组合不能再引用这个subsys。唯一例外的是,我们可以重复mount相同的组合,但是这样并没有创建新组合,只是创建了一个链接指向旧组合;
进程对应每一种hierarchy,一定有一个cgroup对应。
# cat /proc/832/cgroup
6:freezer,debug:/
4:cpuset:/
3:cpu:/
2:schedtune:/
1:cpuacct:/
int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
struct pid *pid, struct task_struct *tsk)
{
char *buf, *path;
int retval;
struct cgroup_root *root;
retval = -ENOMEM;
buf = kmalloc(PATH_MAX, GFP_KERNEL);
if (!buf)
goto out;
mutex_lock(&cgroup_mutex);
spin_lock_bh(&css_set_lock);
for_each_root(root) {
struct cgroup_subsys *ss;
struct cgroup *cgrp;
int ssid, count = 0;
if (root == &cgrp_dfl_root && !cgrp_dfl_root_visible)
continue;
seq_printf(m, "%d:", root->hierarchy_id);
if (root != &cgrp_dfl_root)
for_each_subsys(ss, ssid)
if (root->subsys_mask & (1 << ssid))
seq_printf(m, "%s%s", count++ ? "," : "",
ss->legacy_name);
if (strlen(root->name))
seq_printf(m, "%sname=%s", count ? "," : "",
root->name);
seq_putc(m, ':');
cgrp = task_cgroup_from_root(tsk, root);
/*
* On traditional hierarchies, all zombie tasks show up as
* belonging to the root cgroup. On the default hierarchy,
* while a zombie doesn't show up in "cgroup.procs" and
* thus can't be migrated, its /proc/PID/cgroup keeps
* reporting the cgroup it belonged to before exiting. If
* the cgroup is removed before the zombie is reaped,
* " (deleted)" is appended to the cgroup path.
*/
if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
path = cgroup_path(cgrp, buf, PATH_MAX);
if (!path) {
retval = -ENAMETOOLONG;
goto out_unlock;
}
} else {
path = "/";
}
seq_puts(m, path);
if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
seq_puts(m, " (deleted)\n");
else
seq_putc(m, '\n');
}
retval = 0;
out_unlock:
spin_unlock_bh(&css_set_lock);
mutex_unlock(&cgroup_mutex);
kfree(buf);
out:
return retval;
}
3、初始化
int __init cgroup_init_early(void)
{
static struct cgroup_sb_opts __initdata opts;
struct cgroup_subsys *ss;
int i;
/* (1) 初始化默认root cgrp_dfl_root,选项opts为空,初始了
root->cgrp // cgrp->root = root;
root->cgrp.self // cgrp->self.cgroup = cgrp; cgrp->self.flags |= CSS_ONLINE;
*/
init_cgroup_root(&cgrp_dfl_root, &opts);
cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
/* (2) 轮询subsys进行初始化 */
for_each_subsys(ss, i) {
WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
"invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p name:id=%d:%s\n",
i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
ss->id, ss->name);
WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
"cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
/* (3) 初始化ss->id、ss->name */
ss->id = i;
ss->name = cgroup_subsys_name[i];
if (!ss->legacy_name)
ss->legacy_name = cgroup_subsys_name[i];
/* (4) ss链接到默认root(cgrp_dfl_root)
默认css_set(init_css_set)指向ss
*/
if (ss->early_init)
cgroup_init_subsys(ss, true);
}
return 0;
}
|→
static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
{
struct cgroup_subsys_state *css;
printk(KERN_INFO "Initializing cgroup subsys %s\n", ss->name);
mutex_lock(&cgroup_mutex);
idr_init(&ss->css_idr);
INIT_LIST_HEAD(&ss->cfts);
/* Create the root cgroup state for this subsystem */
ss->root = &cgrp_dfl_root;
/* (4.1) subsys分配一个新的相关的cgroup_subsys_state */
css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
/* We don't handle early failures gracefully */
BUG_ON(IS_ERR(css));
/* (4.2) 初始化css的成员指向cgroup
cgroup为默认值cgrp_dfl_root.cgrp:
css->cgroup = cgrp;
css->ss = ss;
INIT_LIST_HEAD(&css->sibling);
INIT_LIST_HEAD(&css->children);
*/
init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
/*
* Root csses are never destroyed and we can't initialize
* percpu_ref during early init. Disable refcnting.
*/
css->flags |= CSS_NO_REF;
if (early) {
/* allocation can't be done safely during early init */
css->id = 1;
} else {
css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
BUG_ON(css->id < 0);
}
/* Update the init_css_set to contain a subsys
* pointer to this state - since the subsystem is
* newly registered, all tasks and hence the
* init_css_set is in the subsystem's root cgroup. */
/* (4.3) css_set指向新的css */
init_css_set.subsys[ss->id] = css;
have_fork_callback |= (bool)ss->fork << ss->id;
have_exit_callback |= (bool)ss->exit << ss->id;
have_free_callback |= (bool)ss->free << ss->id;
have_canfork_callback |= (bool)ss->can_fork << ss->id;
/* At system boot, before all subsystems have been
* registered, no tasks have been forked, so we don't
* need to invoke fork callbacks here. */
BUG_ON(!list_empty(&init_task.tasks));
/* (4.4) cgroup测指向css:
执行ss->css_online(css);
css->cgroup->subsys[ss->id] = css;
*/
BUG_ON(online_css(css));
mutex_unlock(&cgroup_mutex);
}
int __init cgroup_init(void)
{
struct cgroup_subsys *ss;
int ssid;
BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
BUG_ON(cgroup_init_cftypes(NULL, cgroup_dfl_base_files));
BUG_ON(cgroup_init_cftypes(NULL, cgroup_legacy_base_files));
/*
* The latency of the synchronize_sched() is too high for cgroups,
* avoid it at the cost of forcing all readers into the slow path.
*/
rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
mutex_lock(&cgroup_mutex);
/*
* Add init_css_set to the hash table so that dfl_root can link to
* it during init.
*/
hash_add(css_set_table, &init_css_set.hlist,
css_set_hash(init_css_set.subsys));
BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0));
mutex_unlock(&cgroup_mutex);
for_each_subsys(ss, ssid) {
if (ss->early_init) {
struct cgroup_subsys_state *css =
init_css_set.subsys[ss->id];
css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
GFP_KERNEL);
BUG_ON(css->id < 0);
} else {
cgroup_init_subsys(ss, false);
}
list_add_tail(&init_css_set.e_cset_node[ssid],
&cgrp_dfl_root.cgrp.e_csets[ssid]);
/*
* Setting dfl_root subsys_mask needs to consider the
* disabled flag and cftype registration needs kmalloc,
* both of which aren't available during early_init.
*/
if (cgroup_disable_mask & (1 << ssid)) {
static_branch_disable(cgroup_subsys_enabled_key[ssid]);
printk(KERN_INFO "Disabling %s control group subsystem\n",
ss->name);
continue;
}
/* (1) 默认root(cgrp_dfl_root),支持所有ss */
cgrp_dfl_root.subsys_mask |= 1 << ss->id;
if (!ss->dfl_cftypes)
cgrp_dfl_root_inhibit_ss_mask |= 1 << ss->id;
/* (2) 将cftypes(ss->legacy_cftypes/ss->legacy_cftypes)加入到ss->cfts链表 */
if (ss->dfl_cftypes == ss->legacy_cftypes) {
WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
} else {
WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
}
if (ss->bind)
ss->bind(init_css_set.subsys[ssid]);
}
/* init_css_set.subsys[] has been updated, re-hash */
hash_del(&init_css_set.hlist);
hash_add(css_set_table, &init_css_set.hlist,
css_set_hash(init_css_set.subsys));
WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
WARN_ON(register_filesystem(&cgroup_fs_type));
WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations));
return 0;
}
static struct dentry *cgroup_mount(struct file_system_type *fs_type,
int flags, const char *unused_dev_name,
void *data)
{
struct super_block *pinned_sb = NULL;
struct cgroup_subsys *ss;
struct cgroup_root *root;
struct cgroup_sb_opts opts;
struct dentry *dentry;
int ret;
int i;
bool new_sb;
/*
* The first time anyone tries to mount a cgroup, enable the list
* linking each css_set to its tasks and fix up all existing tasks.
*/
if (!use_task_css_set_links)
cgroup_enable_task_cg_lists();
mutex_lock(&cgroup_mutex);
/* First find the desired set of subsystems */
/* (1) 解析mount选项到opts */
ret = parse_cgroupfs_options(data, &opts);
if (ret)
goto out_unlock;
/* look for a matching existing root */
if (opts.flags & CGRP_ROOT_SANE_BEHAVIOR) {
cgrp_dfl_root_visible = true;
root = &cgrp_dfl_root;
cgroup_get(&root->cgrp);
ret = 0;
goto out_unlock;
}
/*
* Destruction of cgroup root is asynchronous, so subsystems may
* still be dying after the previous unmount. Let's drain the
* dying subsystems. We just need to ensure that the ones
* unmounted previously finish dying and don't care about new ones
* starting. Testing ref liveliness is good enough.
*/
/* (2) */
for_each_subsys(ss, i) {
if (!(opts.subsys_mask & (1 << i)) ||
ss->root == &cgrp_dfl_root)
continue;
if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) {
mutex_unlock(&cgroup_mutex);
msleep(10);
ret = restart_syscall();
goto out_free;
}
cgroup_put(&ss->root->cgrp);
}
/* (3) */
for_each_root(root) {
bool name_match = false;
if (root == &cgrp_dfl_root)
continue;
/*
* If we asked for a name then it must match. Also, if
* name matches but sybsys_mask doesn't, we should fail.
* Remember whether name matched.
*/
if (opts.name) {
if (strcmp(opts.name, root->name))
continue;
name_match = true;
}
/*
* If we asked for subsystems (or explicitly for no
* subsystems) then they must match.
*/
if ((opts.subsys_mask || opts.none) &&
(opts.subsys_mask != root->subsys_mask)) {
if (!name_match)
continue;
ret = -EBUSY;
goto out_unlock;
}
if (root->flags ^ opts.flags)
pr_warn("new mount options do not match the existing superblock, will be ignored\n");
/*
* We want to reuse @root whose lifetime is governed by its
* ->cgrp. Let's check whether @root is alive and keep it
* that way. As cgroup_kill_sb() can happen anytime, we
* want to block it by pinning the sb so that @root doesn't
* get killed before mount is complete.
*
* With the sb pinned, tryget_live can reliably indicate
* whether @root can be reused. If it's being killed,
* drain it. We can use wait_queue for the wait but this
* path is super cold. Let's just sleep a bit and retry.
*/
pinned_sb = kernfs_pin_sb(root->kf_root, NULL);
if (IS_ERR(pinned_sb) ||
!percpu_ref_tryget_live(&root->cgrp.self.refcnt)) {
mutex_unlock(&cgroup_mutex);
if (!IS_ERR_OR_NULL(pinned_sb))
deactivate_super(pinned_sb);
msleep(10);
ret = restart_syscall();
goto out_free;
}
ret = 0;
goto out_unlock;
}
/*
* No such thing, create a new one. name= matching without subsys
* specification is allowed for already existing hierarchies but we
* can't create new one without subsys specification.
*/
if (!opts.subsys_mask && !opts.none) {
ret = -EINVAL;
goto out_unlock;
}
/* (4) 分配新的root */
root = kzalloc(sizeof(*root), GFP_KERNEL);
if (!root) {
ret = -ENOMEM;
goto out_unlock;
}
/* (5) 初始化新的root,初始了
root->cgrp // cgrp->root = root;
root->cgrp.self // cgrp->self.cgroup = cgrp; cgrp->self.flags |= CSS_ONLINE;
root->name = opts->name
*/
init_cgroup_root(root, &opts);
/* (6) 将新的root和opts.subsys_mask指向的多个ss进行链接 */
ret = cgroup_setup_root(root, opts.subsys_mask);
if (ret)
cgroup_free_root(root);
out_unlock:
mutex_unlock(&cgroup_mutex);
out_free:
kfree(opts.release_agent);
kfree(opts.name);
if (ret)
return ERR_PTR(ret);
/* (7) mount新root对应的根目录 */
dentry = kernfs_mount(fs_type, flags, root->kf_root,
CGROUP_SUPER_MAGIC, &new_sb);
if (IS_ERR(dentry) || !new_sb)
cgroup_put(&root->cgrp);
/*
* If @pinned_sb, we're reusing an existing root and holding an
* extra ref on its sb. Mount is complete. Put the extra ref.
*/
if (pinned_sb) {
WARN_ON(new_sb);
deactivate_super(pinned_sb);
}
return dentry;
}
|→
static int cgroup_setup_root(struct cgroup_root *root, unsigned long ss_mask)
{
LIST_HEAD(tmp_links);
struct cgroup *root_cgrp = &root->cgrp;
struct css_set *cset;
int i, ret;
lockdep_assert_held(&cgroup_mutex);
ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
if (ret < 0)
goto out;
root_cgrp->id = ret;
ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0,
GFP_KERNEL);
if (ret)
goto out;
/*
* We're accessing css_set_count without locking css_set_lock here,
* but that's OK - it can only be increased by someone holding
* cgroup_lock, and that's us. The worst that can happen is that we
* have some link structures left over
*/
ret = allocate_cgrp_cset_links(css_set_count, &tmp_links);
if (ret)
goto cancel_ref;
ret = cgroup_init_root_id(root);
if (ret)
goto cancel_ref;
/* (6.1) 创建root对应的顶层root文件夹 */
root->kf_root = kernfs_create_root(&cgroup_kf_syscall_ops,
KERNFS_ROOT_CREATE_DEACTIVATED,
root_cgrp);
if (IS_ERR(root->kf_root)) {
ret = PTR_ERR(root->kf_root);
goto exit_root_id;
}
root_cgrp->kn = root->kf_root->kn;
/* (6.2) 创建cgroup自己对应的一些file,cgroup自己的file由cgroup自己的css(cgrp->self)承担,
后面cgroup会依次创建每个subsys的file,subsys的file由每个ss对应的css(cgrp->subsys[])承担
*/
ret = css_populate_dir(&root_cgrp->self, NULL);
if (ret)
goto destroy_root;
/* (6.3) 将新root需要的subsys和原默认root(cgrp_dfl_root)解除关系,
并且把这些ss重新和新root建立关系
*/
ret = rebind_subsystems(root, ss_mask);
if (ret)
goto destroy_root;
/*
* There must be no failure case after here, since rebinding takes
* care of subsystems' refcounts, which are explicitly dropped in
* the failure exit path.
*/
list_add(&root->root_list, &cgroup_roots);
cgroup_root_count++;
/*
* Link the root cgroup in this hierarchy into all the css_set
* objects.
*/
spin_lock_bh(&css_set_lock);
hash_for_each(css_set_table, i, cset, hlist) {
link_css_set(&tmp_links, cset, root_cgrp);
if (css_set_populated(cset))
cgroup_update_populated(root_cgrp, true);
}
spin_unlock_bh(&css_set_lock);
BUG_ON(!list_empty(&root_cgrp->self.children));
BUG_ON(atomic_read(&root->nr_cgrps) != 1);
kernfs_activate(root_cgrp->kn);
ret = 0;
goto out;
destroy_root:
kernfs_destroy_root(root->kf_root);
root->kf_root = NULL;
exit_root_id:
cgroup_exit_root_id(root);
cancel_ref:
percpu_ref_exit(&root_cgrp->self.refcnt);
out:
free_cgrp_cset_links(&tmp_links);
return ret;
}
||→
static int rebind_subsystems(struct cgroup_root *dst_root,
unsigned long ss_mask)
{
struct cgroup *dcgrp = &dst_root->cgrp;
struct cgroup_subsys *ss;
unsigned long tmp_ss_mask;
int ssid, i, ret;
lockdep_assert_held(&cgroup_mutex);
for_each_subsys_which(ss, ssid, &ss_mask) {
/* if @ss has non-root csses attached to it, can't move */
if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)))
return -EBUSY;
/* can't move between two non-dummy roots either */
if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
return -EBUSY;
}
/* skip creating root files on dfl_root for inhibited subsystems */
tmp_ss_mask = ss_mask;
if (dst_root == &cgrp_dfl_root)
tmp_ss_mask &= ~cgrp_dfl_root_inhibit_ss_mask;
for_each_subsys_which(ss, ssid, &tmp_ss_mask) {
struct cgroup *scgrp = &ss->root->cgrp;
int tssid;
/* (6.3.1) 在新root的根cgroup(dst_root->cgrp)下,
根据subsys的file链表(css->ss->cfts)创建subsys对应的file
*/
ret = css_populate_dir(cgroup_css(scgrp, ss), dcgrp);
if (!ret)
continue;
/*
* Rebinding back to the default root is not allowed to
* fail. Using both default and non-default roots should
* be rare. Moving subsystems back and forth even more so.
* Just warn about it and continue.
*/
if (dst_root == &cgrp_dfl_root) {
if (cgrp_dfl_root_visible) {
pr_warn("failed to create files (%d) while rebinding 0x%lx to default root\n",
ret, ss_mask);
pr_warn("you may retry by moving them to a different hierarchy and unbinding\n");
}
continue;
}
for_each_subsys_which(ss, tssid, &tmp_ss_mask) {
if (tssid == ssid)
break;
css_clear_dir(cgroup_css(scgrp, ss), dcgrp);
}
return ret;
}
/*
* Nothing can fail from this point on. Remove files for the
* removed subsystems and rebind each subsystem.
*/
for_each_subsys_which(ss, ssid, &ss_mask) {
struct cgroup_root *src_root = ss->root;
struct cgroup *scgrp = &src_root->cgrp;
struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
struct css_set *cset;
WARN_ON(!css || cgroup_css(dcgrp, ss));
css_clear_dir(css, NULL);
/* (6.3.2) 取消原root cgroup对subsys的css的引用 */
RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
/* (6.3.3) 链接新root cgroup和subsys的css的引用 */
rcu_assign_pointer(dcgrp->subsys[ssid], css);
ss->root = dst_root;
css->cgroup = dcgrp;
spin_lock_bh(&css_set_lock);
hash_for_each(css_set_table, i, cset, hlist)
list_move_tail(&cset->e_cset_node[ss->id],
&dcgrp->e_csets[ss->id]);
spin_unlock_bh(&css_set_lock);
src_root->subsys_mask &= ~(1 << ssid);
scgrp->subtree_control &= ~(1 << ssid);
cgroup_refresh_child_subsys_mask(scgrp);
/* default hierarchy doesn't enable controllers by default */
dst_root->subsys_mask |= 1 << ssid;
if (dst_root == &cgrp_dfl_root) {
static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
} else {
dcgrp->subtree_control |= 1 << ssid;
cgroup_refresh_child_subsys_mask(dcgrp);
static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
}
if (ss->bind)
ss->bind(css);
}
kernfs_activate(dcgrp->kn);
return 0;
}
static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
.remount_fs = cgroup_remount,
.show_options = cgroup_show_options,
.mkdir = cgroup_mkdir,
.rmdir = cgroup_rmdir,
.rename = cgroup_rename,
};
static int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name,
umode_t mode)
{
struct cgroup *parent, *cgrp;
struct cgroup_root *root;
struct cgroup_subsys *ss;
struct kernfs_node *kn;
int ssid, ret;
/* Do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable.
*/
if (strchr(name, '\n'))
return -EINVAL;
parent = cgroup_kn_lock_live(parent_kn);
if (!parent)
return -ENODEV;
root = parent->root;
/* allocate the cgroup and its ID, 0 is reserved for the root */
/* (1) 分配新的cgroup */
cgrp = kzalloc(sizeof(*cgrp), GFP_KERNEL);
if (!cgrp) {
ret = -ENOMEM;
goto out_unlock;
}
ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
if (ret)
goto out_free_cgrp;
/*
* Temporarily set the pointer to NULL, so idr_find() won't return
* a half-baked cgroup.
*/
cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
if (cgrp->id < 0) {
ret = -ENOMEM;
goto out_cancel_ref;
}
/* (2) 初始化cgroup */
init_cgroup_housekeeping(cgrp);
/* (3) 和父cgroup之间建立起关系 */
cgrp->self.parent = &parent->self;
cgrp->root = root;
if (notify_on_release(parent))
set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
/* create the directory */
/* (3) 创建新的cgroup对应的文件夹 */
kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
if (IS_ERR(kn)) {
ret = PTR_ERR(kn);
goto out_free_id;
}
cgrp->kn = kn;
/*
* This extra ref will be put in cgroup_free_fn() and guarantees
* that @cgrp->kn is always accessible.
*/
kernfs_get(kn);
cgrp->self.serial_nr = css_serial_nr_next++;
/* allocation complete, commit to creation */
list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
atomic_inc(&root->nr_cgrps);
cgroup_get(parent);
/*
* @cgrp is now fully operational. If something fails after this
* point, it'll be released via the normal destruction path.
*/
cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
ret = cgroup_kn_set_ugid(kn);
if (ret)
goto out_destroy;
/* (4) 新cgroup文件夹下创建cgroup自己css对应的默认file */
ret = css_populate_dir(&cgrp->self, NULL);
if (ret)
goto out_destroy;
/* let's create and online css's */
/* (5) 针对root对应的各个susbsys, 每个subsys创建新的css
并且在cgroup文件夹下创建css对应的file
*/
for_each_subsys(ss, ssid) {
if (parent->child_subsys_mask & (1 << ssid)) {
ret = create_css(cgrp, ss,
parent->subtree_control & (1 << ssid));
if (ret)
goto out_destroy;
}
}
/*
* On the default hierarchy, a child doesn't automatically inherit
* subtree_control from the parent. Each is configured manually.
*/
if (!cgroup_on_dfl(cgrp)) {
cgrp->subtree_control = parent->subtree_control;
cgroup_refresh_child_subsys_mask(cgrp);
}
kernfs_activate(kn);
ret = 0;
goto out_unlock;
out_free_id:
cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
out_cancel_ref:
percpu_ref_exit(&cgrp->self.refcnt);
out_free_cgrp:
kfree(cgrp);
out_unlock:
cgroup_kn_unlock(parent_kn);
return ret;
out_destroy:
cgroup_destroy_locked(cgrp);
goto out_unlock;
}
cgroup默认文件,有一些重要的文件比如“tasks”,我们来看看具体的操作。
static struct cftype cgroup_legacy_base_files[] = {
{
.name = "cgroup.procs",
.seq_start = cgroup_pidlist_start,
.seq_next = cgroup_pidlist_next,
.seq_stop = cgroup_pidlist_stop,
.seq_show = cgroup_pidlist_show,
.private = CGROUP_FILE_PROCS,
.write = cgroup_procs_write,
},
{
.name = "cgroup.clone_children",
.read_u64 = cgroup_clone_children_read,
.write_u64 = cgroup_clone_children_write,
},
{
.name = "cgroup.sane_behavior",
.flags = CFTYPE_ONLY_ON_ROOT,
.seq_show = cgroup_sane_behavior_show,
},
{
.name = "tasks",
.seq_start = cgroup_pidlist_start,
.seq_next = cgroup_pidlist_next,
.seq_stop = cgroup_pidlist_stop,
.seq_show = cgroup_pidlist_show,
.private = CGROUP_FILE_TASKS,
.write = cgroup_tasks_write,
},
{
.name = "notify_on_release",
.read_u64 = cgroup_read_notify_on_release,
.write_u64 = cgroup_write_notify_on_release,
},
{
.name = "release_agent",
.flags = CFTYPE_ONLY_ON_ROOT,
.seq_show = cgroup_release_agent_show,
.write = cgroup_release_agent_write,
.max_write_len = PATH_MAX - 1,
},
{ } /* terminate */
}
static ssize_t cgroup_tasks_write(struct kernfs_open_file *of,
char *buf, size_t nbytes, loff_t off)
{
return __cgroup_procs_write(of, buf, nbytes, off, false);
}
|→
static ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf,
size_t nbytes, loff_t off, bool threadgroup)
{
struct task_struct *tsk;
struct cgroup_subsys *ss;
struct cgroup *cgrp;
pid_t pid;
int ssid, ret;
if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
return -EINVAL;
cgrp = cgroup_kn_lock_live(of->kn);
if (!cgrp)
return -ENODEV;
percpu_down_write(&cgroup_threadgroup_rwsem);
rcu_read_lock();
if (pid) {
tsk = find_task_by_vpid(pid);
if (!tsk) {
ret = -ESRCH;
goto out_unlock_rcu;
}
} else {
tsk = current;
}
if (threadgroup)
tsk = tsk->group_leader;
/*
* Workqueue threads may acquire PF_NO_SETAFFINITY and become
* trapped in a cpuset, or RT worker may be born in a cgroup
* with no rt_runtime allocated. Just say no.
*/
if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) {
ret = -EINVAL;
goto out_unlock_rcu;
}
get_task_struct(tsk);
rcu_read_unlock();
ret = cgroup_procs_write_permission(tsk, cgrp, of);
if (!ret) {
/* (1) attach task到cgroup */
ret = cgroup_attach_task(cgrp, tsk, threadgroup);
#if defined(CONFIG_CPUSETS) && !defined(CONFIG_MTK_ACAO)
if (cgrp->id != SS_TOP_GROUP_ID && cgrp->child_subsys_mask == CSS_CPUSET_MASK
&& excl_task_count > 0) {
remove_set_exclusive_task(tsk->pid, 0);
}
#endif
}
put_task_struct(tsk);
goto out_unlock_threadgroup;
out_unlock_rcu:
rcu_read_unlock();
out_unlock_threadgroup:
percpu_up_write(&cgroup_threadgroup_rwsem);
for_each_subsys(ss, ssid)
if (ss->post_attach)
ss->post_attach();
cgroup_kn_unlock(of->kn);
return ret ?: nbytes;
}
||→
static int cgroup_attach_task(struct cgroup *dst_cgrp,
struct task_struct *leader, bool threadgroup)
{
LIST_HEAD(preloaded_csets);
struct task_struct *task;
int ret;
/* look up all src csets */
spin_lock_bh(&css_set_lock);
rcu_read_lock();
task = leader;
/* (1.1) 遍历task所在线程组,把需要迁移的进程的css_set加入到preloaded_csets链表 */
do {
cgroup_migrate_add_src(task_css_set(task), dst_cgrp,
&preloaded_csets);
if (!threadgroup)
break;
} while_each_thread(leader, task);
rcu_read_unlock();
spin_unlock_bh(&css_set_lock);
/* (1.2) 去掉旧的css_set对css的应用,
分配新的css_set承担新的css组合的应用,并且给进程使用
*/
/* prepare dst csets and commit */
ret = cgroup_migrate_prepare_dst(dst_cgrp, &preloaded_csets);
if (!ret)
ret = cgroup_migrate(leader, threadgroup, dst_cgrp);
cgroup_migrate_finish(&preloaded_csets);
return ret;
}
1.3、cgroup subsystem
1.3.1、cpu
static struct cftype cpu_files[] = {
#ifdef CONFIG_FAIR_GROUP_SCHED
{
.name = "shares",
.read_u64 = cpu_shares_read_u64,
.write_u64 = cpu_shares_write_u64,
},
#endif
#ifdef CONFIG_CFS_BANDWIDTH // cfs 带宽控制
{
.name = "cfs_quota_us",
.read_s64 = cpu_cfs_quota_read_s64,
.write_s64 = cpu_cfs_quota_write_s64,
},
{
.name = "cfs_period_us",
.read_u64 = cpu_cfs_period_read_u64,
.write_u64 = cpu_cfs_period_write_u64,
},
{
.name = "stat",
.seq_show = cpu_stats_show,
},
#endif
#ifdef CONFIG_RT_GROUP_SCHED // rt 带宽控制
{
.name = "rt_runtime_us",
.read_s64 = cpu_rt_runtime_read,
.write_s64 = cpu_rt_runtime_write,
},
{
.name = "rt_period_us",
.read_u64 = cpu_rt_period_read_uint,
.write_u64 = cpu_rt_period_write_uint,
},
#endif
{ } /* terminate */
};
struct cgroup_subsys cpu_cgrp_subsys = {
.css_alloc = cpu_cgroup_css_alloc, // 分配新的task_group
.css_released = cpu_cgroup_css_released,
.css_free = cpu_cgroup_css_free,
.fork = cpu_cgroup_fork,
.can_attach = cpu_cgroup_can_attach,
.attach = cpu_cgroup_attach,
.legacy_cftypes = cpu_files,
.early_init = 1,
};
1.3.2、cpuset
static struct cftype files[] = {
{
.name = "cpus",
.seq_show = cpuset_common_seq_show,
.write = cpuset_write_resmask,
.max_write_len = (100U + 6 * NR_CPUS),
.private = FILE_CPULIST,
},
{
.name = "mems",
.seq_show = cpuset_common_seq_show,
.write = cpuset_write_resmask,
.max_write_len = (100U + 6 * MAX_NUMNODES),
.private = FILE_MEMLIST,
},
{
.name = "effective_cpus",
.seq_show = cpuset_common_seq_show,
.private = FILE_EFFECTIVE_CPULIST,
},
{
.name = "effective_mems",
.seq_show = cpuset_common_seq_show,
.private = FILE_EFFECTIVE_MEMLIST,
},
{
.name = "cpu_exclusive",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_CPU_EXCLUSIVE,
},
{
.name = "mem_exclusive",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_MEM_EXCLUSIVE,
},
{
.name = "mem_hardwall",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_MEM_HARDWALL,
},
{
.name = "sched_load_balance",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_SCHED_LOAD_BALANCE,
},
{
.name = "sched_relax_domain_level",
.read_s64 = cpuset_read_s64,
.write_s64 = cpuset_write_s64,
.private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
},
{
.name = "memory_migrate",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_MEMORY_MIGRATE,
},
{
.name = "memory_pressure",
.read_u64 = cpuset_read_u64,
},
{
.name = "memory_spread_page",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_SPREAD_PAGE,
},
{
.name = "memory_spread_slab",
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_SPREAD_SLAB,
},
{
.name = "memory_pressure_enabled",
.flags = CFTYPE_ONLY_ON_ROOT,
.read_u64 = cpuset_read_u64,
.write_u64 = cpuset_write_u64,
.private = FILE_MEMORY_PRESSURE_ENABLED,
},
{ } /* terminate */
}
struct cgroup_subsys cpuset_cgrp_subsys = {
.css_alloc = cpuset_css_alloc,
.css_online = cpuset_css_online,
.css_offline = cpuset_css_offline,
.css_free = cpuset_css_free,
.can_attach = cpuset_can_attach,
.cancel_attach = cpuset_cancel_attach,
.attach = cpuset_attach,
.post_attach = cpuset_post_attach,
.bind = cpuset_bind,
.fork = cpuset_fork,
.legacy_cftypes = files,
.early_init = 1,
};
1.3.3、schedtune
static struct cftype files[] = {
{
.name = "boost",
.read_u64 = boost_read,
.write_u64 = boost_write,
},
{
.name = "prefer_idle",
.read_u64 = prefer_idle_read,
.write_u64 = prefer_idle_write,
},
{ } /* terminate */
};
struct cgroup_subsys schedtune_cgrp_subsys = {
.css_alloc = schedtune_css_alloc,
.css_free = schedtune_css_free,
.legacy_cftypes = files,
.early_init = 1,
};
1.3.4、cpuacct
static struct cftype files[] = {
{
.name = "usage",
.read_u64 = cpuusage_read,
.write_u64 = cpuusage_write,
},
{
.name = "usage_percpu",
.seq_show = cpuacct_percpu_seq_show,
},
{
.name = "stat",
.seq_show = cpuacct_stats_show,
},
{ } /* terminate */
};
struct cgroup_subsys cpuacct_cgrp_subsys = {
.css_alloc = cpuacct_css_alloc,
.css_free = cpuacct_css_free,
.legacy_cftypes = files,
.early_init = 1,
};
参考资料
1、linux 2.6 O(1)调度算法
2、linux cfs调度器_理论模型
3、linux cfs调度框图
4、linux cfs之特殊时刻vruntime的计算
5、entity级负载的计算
6、cpu级负载的计算update_cpu_load
7、系统级负载的计算:Linux Load Averages: Solving the Mystery
8、系统级负载的计算:UNIX Load Average
9、Linux Scheduling Domains
10、[MTK文档:CPU Utilization-scheduler(V1.1)]
11、Docker背后的内核知识——cgroups资源限制
12、Linux资源管理之cgroups简介
往期课程可扫以下二维码试听与购买