WWW 2022 | MBCT:基于树模型的特征可感知的个性化校准方法
▐ 引言
▐ 背景
▐ 校准误差的度量
校准评价指标的误差对比
▐ 校准方法
特征可感知的分箱方法
校准与序关系的讨论
Multiple Boosting Calibration Tree
▐ 实验与分析
实验设置
离线实验
在线实验
▐ 结论与展望
参考文献
[1] Rebecca Roelofs, Nicholas Cain, Jonathon Shlens, and Michael C Mozer. 2020. Mitigating bias in calibration error estimation. arXiv preprint arXiv:2012.08668 (2020).
[2] Chirag Gupta, Aleksandr Podkopaev, and Aaditya Ramdas. 2020. Distributionfree binary classification: prediction sets, confidence intervals and calibration. In Advances in Neural Information Processing Systems.
[3] Ananya Kumar, Percy Liang, and Tengyu Ma. 2019. Verified uncertainty calibration. In Advances in Neural Information Processing Systems. 3787–3798.
[4] John Platt et al. 1999. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers 10, 3 (1999), 61–74.
[5] Meelis Kull, Miquel Perello-Nieto, Markus Kängsepp, Hao Song, Peter Flach, et al. 2019. Beyond temperature scaling: obtaining well-calibrated multiclass probabilities with dirichlet calibration. arXiv preprint arXiv:1910.12656 (2019).
[6] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. 2017. On calibration of modern neural networks. In International Conference on Machine Learning. 1321–1330.
[7] Azadeh Sadat Mozafari, Hugo Siqueira Gomes, Wilson Leão, Steeven Janny, and Christian Gagné. 2018. Attended temperature scaling: a practical approach for calibrating deep neural networks. arXiv preprint arXiv:1810.11586 (2018).
[8] Bianca Zadrozny and Charles Elkan. 2002. Transforming classifier scores into accurate multiclass probability estimates. In ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 694–699.
[9] Bianca Zadrozny and Charles Elkan. 2001. Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. In International Conference on Machine Learning. 609–616
[10] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. 2015. Obtaining well calibrated probabilities using bayesian binning. In AAAI Conference on Artificial Intelligence, Vol. 29.
[11] Mahdi Pakdaman Naeini, Gregory F Cooper, and Milos Hauskrecht. 2014. Binary classifier calibration: non-parametric approach. arXiv preprint arXiv:1401.3390 (2014).
[12] Meelis Kull, Telmo Silva Filho, and Peter Flach. 2017. Beta calibration: a wellfounded and easily implemented improvement on logistic calibration for binary classifiers. In Artificial Intelligence and Statistics. 623–631.
丨CIKM 2021 | 多场景下的星型CTR预估模型STAR
丨面向在线广告全链路拍卖机制设计新突破 — Two-stage Auction