其他
《Nature Medicine》最新研究:基于达摩院医疗AI,CT首次实现大规模胰腺癌筛查
针对胰腺癌变位置隐匿、在平扫CT图像中无明显表征等特点,研究团队构建了一个独特的深度学习框架,最终训练为胰腺癌早期检测模型PANDA:一是通过构建分割网络(U-Net)来定位胰腺,二是采用多任务网络(CNN)来检测异常情况,三是采用双通道Transformer来分类并识别胰腺病变的类型。简而言之,该技术利用AI放大并识别平扫CT图像中那些肉眼难以识别的细微的病理特征,实现高效、安全的早期胰腺癌检测,并克服了过往筛查手段假阳性偏高的技术难题。论文共同一作、上海市胰腺疾病研究所曹凯医生介绍,该研究构建了迄今最大的胰腺肿瘤CT训练集,最终通过全球十多家医院的多中心验证,测得92.9%的敏感性(判断存在胰腺病变的准确率)和99.9%的特异性(判断无病的准确率),在2万多人的真实病例回顾性试验中,发现了31例临床漏诊病变,有2例早期胰腺癌病患已完成手术治愈。截至目前,这项技术已在医院、体检等场景被调用超过50万次,每1000次只出现一次假阳性,未来将持续进行多中心前瞻性临床验证,以期改写“胰腺肿瘤不推荐筛查”的悲观论点。复旦大学附属肿瘤医院放射诊断科主任顾雅佳教授表示,这篇论文提出了一种有潜力的大规模胰腺癌筛查方式,在提升检出率的同时,又不会给病人带来额外的辐射与经济负担。“设想一下,我们去体检时做个最简单的平扫CT,就能查出有无胰腺癌,这将帮助到很多胰腺病人,减少悲剧的发生。”
达摩院医疗AI团队负责人、IEEE Fellow吕乐表示,这项研究是一个重要的里程碑,在临床上证实“平扫CT+AI”的癌症筛查技术路径的可靠性。达摩院医疗AI团队正在联合全球多家顶尖医疗机构,利用AI技术探索低廉、高效的多癌筛查新方法,希望能让人们通过一次平扫CT就查出多种早期癌症。目前,该工作已经在胰腺癌、食管癌肺癌、乳腺癌、肝癌、胃癌、结直肠癌等七个高发癌症上取得阶段性进展,研究成果先后登上《Nature Medicine》《Nature Communications》等医学期刊以及CVPR/MICCAI/IPMI等AI顶会。