STM32第九章-IIC通讯应用
点击上方“果果小师弟”,选择“置顶/星标公众号”
干货福利,第一时间送达!
说到IIC(也叫I2C,其实都是一样的)通讯,是一种最简单的通讯协议。在学习STM32时第一个接触的就是串口USART通讯协议,接下来就是IIC通讯协议了还有的就是SPI协议,SPI我们下一章再说,这一章就说说IIC吧。很多模块都用到过IIC通讯,最常见的就是4针的0.96寸OLED显示屏,当然啦在学习STM32是我们一般最先接触到就是通过IIC来与EEPROM进行通讯,但是本章我们只讲协议本身。
一、 IIC 简介
IIC(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。它是由数据线 SDA 和时钟SCL构成的串行总线,可发送和接收数据。在CPU与被控IC之间、IC与 IC之间进行双向传送,高速IIC总线一般可达 400kbps 以上。
IIC 总线在传送数据过程中共有三种类型信号, 它们分别是:开始信号、结束信号和应答信号。
开始信号:SCL 为高电平时,SDA 由高电平向低电平跳变,开始传送数据。
结束信号:SCL 为高电平时,SDA 由低电平向高电平跳变,结束传送数据。
应答信号:接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据。CPU向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU接收到应答信号后,根据实际情况作出是否继续传递信号的判断。若未收到应答信号,由判断为受控单元出现故障。这些信号中,起始信号是必需的,结束信号和应答信号都可以不要。
IIC使用 SDA信号线来传输数据,使用 SCL信号线进行数据同步。SDA数据线在 SCL的每个时钟周期传输一位数据。传输时,SCL为高电平的时候 SDA 表示的数据有效,即此时的 SDA 为高电平时表示数据“1”,为低电平时表示数据“0”。当 SCL为低电平时,SDA的数据无效,一般在这个时候SDA进行电平切换,为下一次表示数据做好准备。每次数据传输都以字节为单位,每次传输的字节数不受限制。
如果我们直接控制STM32的两个GPIO 引脚,分别用作 SCL和SDA,按照上述信号的时序要求,直接像控制 LED 灯那样控制引脚的输出(若是接收数据时则读取 SDA电平),就可以实现 IIC通讯。同样假如我们按照 USART的要求去控制引脚,也能实现 USART通讯。所以只要遵守协议,就是标准的通讯,不管您如何实现它,不管是ST生产的控制器还是ATMEL生产的存储器, 都能按通讯标准交互。
由于直接控制 GPIO 引脚电平产生通讯时序时,需要由 CPU 控制每个时刻的引脚状态,所以称之为“软件模拟协议”方式。相对地,还有“硬件协议”方式,STM32 的 IIC片上外设专门负责实现IIC通讯协议,只要配置好该外设,它就会自动根据协议要求产生通讯信号,收发数据并缓存起来,CPU只要检测该外设的状态和访问数据寄存器,就能完成数据收发。这种由硬件外设处理IIC协议的方式减轻了 CPU 的工作,且使软件设计更加简单。
二、 软件模拟协议
1.IIC初始化函数
功能:配置IIC的时钟线和数据线
void IIC_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOC, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11|GPIO_Pin_12;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;//推挽输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOC, &GPIO_InitStructure);
IIC_SCL=1;
IIC_SDA=1;
}
因为是软件模拟IIC那么我们选择IIC通讯的引脚就相对来说说比较随意,具体使用的引脚可查阅《STM32F1xx 规格书》,以它为准。这里我们就选择PC11、PC12作为IIC的数据和时钟引脚。设置为推挽输出即可。
2.起始信号
功能:CPU 发起 IIC总线启动信号{
IIC_SDA=1;
IIC_SCL=1;
delay_us(4);
IIC_SDA=0;//START:当 CLK 为高电平时,DATA 从高到低改变
delay_us(4);
IIC_SCL=0;//钳住I2C总线,准备发送或接收数据
delay_us(4);
}
3.等待应答信号
功能:CPU 产生一个时钟,并读取器件的 ACK 应答信号u8 IIC_Wait_Ack(void)
{
u8 re;
IIC_SDA=1;delay_us(1);//CPU释放SDA总线
IIC_SCL=1;delay_us(1);//CPU驱动SCL=1,此时器件会返回ACK应答
if(READ_SDA){//CPU读取SDA口线状态
re=1;
}else{
re=0;
}
IIC_SCL=0;//时钟输出0
return re;
}
STM32控制 SDA 信号线输出高阻态,释放它对 SDA的控制权,由接收方控制;控制 SCL 信号线切换高低电平,产生一个时钟信号,根据IIC协议,此时接收方若把 SDA 设置为低电平,就表示返回一个“应答”信号,若 SDA 保持为高电平,则表示返回一个“非应答 ”信号;在 SCL 切换高低电平之间,有个延时确保给予了足够的时间让接收方返回应答信号,延时后使用宏READ_SDA读取 SDA 线的电平,根据电平值赋予 re 变量的值;函数的最后返回 re的值,接收到响应时返回 0,未接收到响应时返回 1。当 STM32 作为数据接收端,调用 IIC_ReadByte函数后,需要给发送端返回应答或非应答信号,此时可使用 IIC_Ack及 IIC_Nack 函数处理,该处理与 IIC_Wait_Ack函数相反,此时 SDA线也由 STM32控制。
4.应答信号
功能: CPU 产生一个 ACK 信号void IIC_Ack(void)
{
IIC_SDA=0;//CPU驱动SDA=0
delay_us(2);
IIC_SCL=1;//CPU产生一个时钟
delay_us(2);
IIC_SCL=0;
delay_us(2);
IIC_SDA=1;//CPU释放SDA总线
}
//CPU产生1个NACK信号
void IIC_Nack (void)
{
IIC_SDA=1();//CPU驱动SDA=1
delay_us(2);
IIC_SDA=1;//CPU产生1个时钟
delay_us(2);
IIC_SCL=0;
delay_us(2);
}
代码的具体流程就是:根据要返回“应答”还是“非应答”信号,先准备好 SDA 线的电平,IIC_Ack函数中把 SDA 线设置为低电平,表示“应答”信号,IIC_Nack 函数中把 SDA 线设置为高电平,表示“非应答”信号;控制 SCL 线进行高低电平切换,产生一个时钟信号,在 SCL 线的高低电平之间加入一个延时,确保有足够的时间让通讯的另一方接收到 SDA信号线的电平;在 IIC_Ack 函数的末尾,响应信号发送结束后,重新把 SDA 线设置为高电平以释放总线的控制权,方便后续的通讯。
5.停止信号
功能:CPU 发起IIC总线停止信号IIC_SDA=0;//STOP:当 CLK 为高电平时候, SDA出现一个上调表示IIC总线停止信号
IIC_SCL=1;
delay_us(4);
IIC_SDA=1;//发送IIC总线结束信号
}
以上就是软件模拟IIC协议了,在平时的应用中我们实际上不需要掌握这些具体的代码,只要知道IIC协议的过程原理就行了,因为一般来说我们用的都是别人写好的代码,我们只需要会用就可以了,如果你的代码和我这些有出入也没有关系,只要能正常通讯即可,当然如果你的设计在过程中出现了一些问题,或者显示不正常,我们首先考虑的也不是底层协议的问题,而是你代码的其他问题。
6.IIC发送字节
功能: CPU向IIC总线设备发送8bit数据{
u8 i;
/* 先发送字节的高位bit7 */
for (i = 0; i < 8; i++)
{
if (Byte & 0x80)
{
IIC_SDA=1;
}
else
{
IIC_SDA=0;
}
delay_us(2);
IIC_SCL=1;
delay_us(2);
IIC_SCL=0;
if (i == 7)
{
IIC_SDA=1;// 释放总线
}
Byte <<= 1; //左移一个bit
delay_us(2);
}
}
首先程序对输入参数Byte和 0x80“与”运算,判断其最高位的逻辑值,为 1 时控制 SDA输出高电平,为 0则控制 SDA输出低电平;接下来延时,以此保证 SDA 线输出的电平已稳定,再进行后续操作;之后控制 SCL线产生高低电平跳变,也就是产生 IIC协议中 SCL线的通讯时钟;在 SCL线高低电平之间有个延时,该延时期间 SCL线维持高电平,根据 IIC协议,此时数据有效,通讯的另一方会在此时读取 SDA 线的电平逻辑,高电平时接收到该位为数据 1,否则为 0;就这样一次循环体执行结束,Byte 左移一位以便下次循环发送下一位的数据;如次循环 8 次,把Byte 中的 8 位个数据位发送完毕,在最后一位发送完成后(此时循环计数器 i=7),控制 SDA 线输出 1(即高阻态),也就是说发送方释放 SDA总线,等待接收方的应答信号。
7.IIC读取字节
功能: CPU从IIC总线设备读取8bit数据{
u8 i;
u8 value;
//读到第1个bit为数据的bit7
value = 0;
for (i = 0; i < 8; i++)
{
value <<= 1;
IIC_SCL=1;
delay_us(2);
if (SDA_READ)
{
value++;
}
IIC_SCL=0;
delay_us(2);
}
return value;
}
首先使用一个变量 value 暂存要接收的数据,每次循环开始前先对 value 的值左移 1 位,以给 value 变量的 bit0 腾出空间,bit0 将用于缓存最新接收到的数据位,一位一位地接收并移位,最后拼出完整的 8位数据;然后控制 SCL线进行高低电平切换,输出 IIC 协议通讯用的时钟;在SCL线高低电平切换之间,有个延时,该延时确保给予了足够的时间让数据发送方进行处理,即发送方在 SCL 时钟驱动下通过 SDA 信号线发出电平逻辑信号,而这个延时之后,作为数据接收端的 STM32 使用宏SDA_READ读取 SDA信号线的电平,若信号线为 1,则 value++,即把它的 bit0置 1,否则不操作(这样该位将保持为 0),这样就读取到了一位的数据;接下来SCL线切换成低电平后,加入延时,以便接收端根据需要切换 SDA 线输出数据;直到循环结束后,value 变量中包含有 1 个字节数据,使用 return 把它作为函数返回值返回。
三、 硬件协议
相对来说,硬件IIC直接使用外设来控制引脚,可以减轻 CPU 的负担。不过使用硬件IIC 时必须使用某些固定的引脚作为 SCL 和 SDA,软件模拟IIC则可以使用任意 GPIO 引脚,相对比较灵活。STM32的IIC外设可用作通讯的主机或从机,支持 100Kbit/s 和 400Kbit/s 的速率,支持 7位、10位设备地址,支持 DMA数据传输,并具有数据校验功能。它的IIC外设还支持 SMBus2.0协,SMBus 协议与IIC类似,主要应用于笔记本电脑的电池管理中。
STM32 芯片有多个IIC外设,它们的IIC通讯信号引出到不同的 GPIO 引脚上,使用时必须配置到这些指定的引脚,GPIO引脚的复用功能,可查阅《STM32F1xx 规格书》,以它为准。
IIC初始化函数
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;// 开漏输出
GPIO_Init(GPIOA, &GPIO_InitStructure);
IIC_SCL=1;
IIC_SDA=1;//给一个停止信号, 复位I2C总线上的所有设备到待机模式
}
这里为啥设置为开漏输出的方式呢?
这是由于使用的是软件模拟IIC方式,而IIC协议的 GPIO 必须的开漏输出模式,开漏输出模式在输出高电平时实际输出高阻态,当IIC该总线上所有设备都输出高阻态时,由外部的上拉电阻上拉为高电平。另外当 STM32 的 GPIO 配置成开漏输出模式时,它仍然可以通过读取GPIO 的输入数据寄存器获取外部对引脚的输入电平,也就是说它同时具有浮空输入模式的功能,因此在后面控制 SDA线对外输出电平或读取 SDA线的电平信号时不需要切换 GPIO的模式。
另外在硬件IIC协议之下,它的起始信号、等待应答信号、应答信号、停止信号都与软件模拟IIC协议之下的函数相同,在这里我就不重复说明了。
总结:IIC通讯协议很简单,在实际项目中我们不需要掌握具体的IIC协议代码,只要会用即可,作为最常见且常用的协议,我们最好能够背下来或者有所了解。现在IIC通讯不陌生了吧!END往期精彩回顾
一、STM32第一章-寄存器你懂吗二、STM32第二章-启动过程详解三、STM32第三章-系统时钟配置四、STM32第四章-外部中断管理五、STM32第五章-串口通讯详解六、STM32第六章-TIM定时器详解七、STM32第七章-脉冲宽度调制八、STM32第八章-TIM输入捕获
如果觉得文章对你有帮助,欢迎转发、分享给你的朋友,感谢您的支持!如需转载请联系我!