其他
跟着Nature学绘图(6) PCA分析图表可视化
欢迎关注R语言数据分析指南
❝本节来继续进行论文图表复现,主要还是基于「ggplot2」来进行数据可视化
❞
❝近期系统整理了一下公众号所写过的一些经典文档,如果需要获取全部代码的欢迎加入小编的VIP交流群,「付费99元,周期一年」群内同步上传代码, 公众号右下角添加微信咨询即可
❞
以往案例
安装并加载R包
package.list=c("tidyverse","ggrepel","factoextra","RColorBrewer")
for (package in package.list) {
if (!require(package,character.only=T, quietly=T)) {
install.packages(package)
library(package, character.only=T)
}
}
导入数据
df <- read_tsv("F3.xls")
PCA分析
pca <- df %>% column_to_rownames(var="Sample_id") %>%
select(-Subtype) %>% prcomp(.,scale. = TRUE)
每个主成分解释的总方差
var_explained <- pca$sdev^2/sum(pca$sdev^2)
数据可视化
fviz_pca_biplot(pca, axes = c(1, 2),geom.ind = c("point"),geom.var = c("arrow", "text"),
pointshape = 20,pointsize=4,
label ="var",repel = TRUE,col.var = "grey50",
labelsize=0.5,
col.ind = df$Subtype)+
scale_color_manual(values = colorRampPalette(brewer.pal(12,"Paired"))(4))+
labs(x=paste0("(PC1: ",round(var_explained[1]*100,2),"%)"),
y=paste0("(PC2: ",round(var_explained[2]*100,2),"%)"),
title="PCA-Biplot")+
theme(panel.background = element_rect(fill = 'white', colour = 'black'),
axis.title.x = element_text(colour="black",size = 12,margin = margin(t=12)),
axis.title.y = element_text(colour="black",size = 12,margin = margin(r=12)),
axis.text=element_text(color="black"),
plot.title = element_text(size=12,colour = "black",hjust=0.5,face = "bold"),
legend.title = element_blank(),
legend.key=element_blank(), # 图例键为空
legend.text = element_text(color="black",size=9), # 定义图例文本
legend.spacing.x=unit(0.1,'cm'), # 定义文本书平距离
legend.key.width=unit(0.2,'cm'), # 定义图例水平大小
legend.key.height=unit(0.2,'cm'), # 定义图例垂直大小
legend.background=element_blank(), # 设置背景为空
legend.box.background=element_rect(colour="black"), # 图例绘制边框
legend.position=c(1,0),legend.justification=c(1,0))
数据代码获取
❝本节介绍到此结束,如需要获取相关数据可以加入小编的「VIP交流群,付费99元周期一年」,群内会同步上传文档代码,公众号右下角可添加小编微信。「由于近期事情较多,公众号后台私信将不再回复,请各位谅解」
❞
往期推荐