Flink SQL 如何实现数据流的 Join?
点击上方蓝色字体,置顶/星标哦
目前10000+人已关注加入我们
作者:林小铂@网易游戏
编辑:紫霞仙子
无论在 OLAP 还是 OLTP 领域,Join 都是业务常会涉及到且优化规则比较复杂的 SQL 语句。对于离线计算而言,经过数据库领域多年的积累,Join 语义以及实现已经十分成熟,然而对于近年来刚兴起的 Streaming SQL 来说 Join 却处于刚起步的状态。
其中最为关键的问题在于 Join 的实现依赖于缓存整个数据集,而 Streaming SQL Join 的对象却是无限的数据流,内存压力和计算效率在长期运行来说都是不可避免的问题。下文将结合 SQL 的发展解析 Flink SQL 是如何解决这些问题并实现两个数据流的 Join。
离线 Batch SQL Join 的实现
传统的离线 Batch SQL (面向有界数据集的 SQL)有三种基础的实现方式,分别是 Nested-loop Join、Sort-Merge Join 和 Hash Join。
Nested-loop Join 最为简单直接,将两个数据集加载到内存,并用内嵌遍历的方式来逐个比较两个数据集内的元素是否符合 Join 条件。Nested-loop Join 虽然时间效率以及空间效率都是最低的,但胜在比较灵活适用范围广,因此其变体 BNL 常被传统数据库用作为 Join 的默认基础选项。
Sort-Merge Join 顾名思义,分为两个 Sort 和 Merge 阶段。首先将两个数据集进行分别排序,然后对两个有序数据集分别进行遍历和匹配,类似于归并排序的合并。值得注意的是,Sort-Merge 只适用于 Equi-Join(Join 条件均使用等于作为比较算子)。Sort-Merge Join 要求对两个数据集进行排序,成本很高,通常作为输入本就是有序数据集的情况下的优化方案。
Hash Join 同样分为两个阶段,首先将一个数据集转换为 Hash Table,然后遍历另外一个数据集元素并与 Hash Table 内的元素进行匹配。第一阶段和第一个数据集分别称为 build 阶段和 build table,第二个阶段和第二个数据集分别称为 probe 阶段和 probe table。Hash Join 效率较高但对空间要求较大,通常是作为 Join 其中一个表为适合放入内存的小表的情况下的优化方案。和 Sort-Merge Join 类似,Hash Join 也只适用于 Equi-Join。
实时 Streaming SQL Join
相对于离线的 Join,实时 Streaming SQL(面向无界数据集的 SQL)无法缓存所有数据,因此 Sort-Merge Join 要求的对数据集进行排序基本是无法做到的,而 Nested-loop Join 和 Hash Join 经过一定的改良则可以满足实时 SQL 的要求。
我们通过例子来看基本的 Nested Join 在实时 Streaming SQL 的基础实现(案例及图来自 Piotr Nowojski 在 Flink Forward San Francisco 的分享[2])。
Flink SQL 的 Join
SELECT * FROM Orders
INNER JOIN Product
ON Orders.productId = Product.id
SELECT *
FROM
Orders o,
Shipments s
WHERE
o.id = s.orderId AND
s.shiptime BETWEEN o.ordertime AND o.ordertime + INTERVAL '4' HOUR
这个查询会为 Orders 表设置了 o.ordertime > s.shiptime- INTERVAL ‘4’ HOUR 的时间下界(图4)。
SELECT
o.amount * r.rate
FROM
Orders o,
LATERAL Table(Rates(o.time)) r
WHERE
o.currency = r.currency
值得注意的是,不同于在 Regular Join 和 Time-Windowed Join 中两个表是平等的,任意一个表的新记录都可以与另一表的历史记录进行匹配,在 Temporal Table Join 中,Temoparal Table 的更新对另一表在该时间节点以前的记录是不可见的。这意味着我们只需要保存 Build Side 的记录直到 Watermark 超过记录的版本字段。因为 Probe Side 的输入理论上不会再有早于 Watermark 的记录,这些版本的数据可以安全地被清理掉。
总结
参考
Flux capacitor, huh? Temporal Tables and Joins in Streaming SQL
https://flink.apache.org/2019/05/14/temporal-tables.html
How to Join Two Data Streams? - Piotr Nowojski
https://www.slideshare.net/FlinkForward/flink-forward-san-francisco-2019-how-to-join-two-data-streams-piotr-nowojski
Joins in Continuous Queries
https://ci.apache.org/projects/flink/flink-docs-release-1.9/dev/table/streaming/joins.html#joins-in-continuous-queries
Temporal features in SQL:2011
https://cs.ulb.ac.be/public/_media/teaching/infoh415/tempfeaturessql2011.pdf
Hash join in MySQL 8
https://cs.ulb.ac.be/public/_media/teaching/infoh415/tempfeaturessql2011.pdf
SQL:2011
https://en.wikipedia.org/wiki/SQL:2011
FLIP-66: Support Time Attribute in SQL DDL
https://cwiki.apache.org/confluence/display/FLINK/FLIP-66%3A+Support+Time+Attribute+in+SQL+DDL
作者介绍:
林小铂,网易游戏高级开发工程师,负责游戏数据中心实时平台的开发及运维工作,目前专注于 Apache Flink 的开发及应用。探究问题本来就是一种乐趣。
原文链接:http://1t.click/b5k3
更多精彩
欢迎加入数仓BI技术交流群。进群方式:请加小助微信(微信号:iom1128),回复:数据,备注行业-职位-城市,审核通过 会自动拉你进群。
Q: 关于数据仓库,你还想了解什么?
欢迎留言区与大家分享
觉得不错,请把这篇文章分享给你的朋友哦
入群请联系小助手:iom1128『紫霞仙子』
更多精彩,请戳"阅读原文"到"数仓之路"查看
更多精彩,请戳"阅读原文"到"数据分析"查看
!关注不迷路~ 各种福利、资源定期分享!