查看原文
其他

图解Pandas重复值处理

Peter 尤而小屋 2022-05-28

公众号:尤而小屋
作者:Peter
编辑:Peter

大家好,我是Peter~

今天带来的文章是关于Pandas中重复值处理。Pandas中处理重复值主要使用的是两个函数:

  • duplicated():判断是否有重复值
  • drop_duplicates() :删除重复值

一、模拟数据

在本文中模拟了两份不同的数据:

1、一份订单数据,后面会使用

import pandas as pd
import numpy as np

# 导入一份模拟数据:待用

df1 = pd.read_excel("订单重复值.xlsx")
df1

2、模拟的另一份数据:

df2 = pd.DataFrame(np.ones([10,2]),  # 生成6*2的全部为1的数据
                   columns=["col1","col2"]
                  )
df2

再增加了两个字段:都是从列表中随机有抽样放回的选取

# 增加两列
list1 = ["a","b"]
list2 = [2,3]

# 在列表中随机选择10个元素,有放回抽样
df2["col3"] = np.random.choice(list1,10)  
df2["col4"] = np.random.choice(list2,10)

df2

二、判断重复值-duplicated()

函数的功能是检查数据中是否有重复值,用于标记 Series 中的值、DataFrame 中的记录行是否重复,重复为 True,不重复为 False。

每行数据都是和它前面的记录相比较。

2.1语法

针对DataFrame类型数据:

pandas.DataFrame.duplicated(subset=None,keep='first')

或者针对Series的数据:

pandas.Series.duplicated(keep='first')

keep参数的3种取值解释:

  • first:将重复项标记True为第一次出现的除外
  • last:将重复项标记True为最后一次除外
  • False:将所有重复项标记为True

2.2基本使用

通过这个函数能够判断哪些数据是重复的:重复标记为True,否则为False

2.3参数subset

df2.duplicated(subset=["col3"])  # 单独看col3列是否重复

# 结果
0    False
1     True
2    False
3     True
4     True
5     True
6     True
7     True
8     True
9     True
dtype: bool
  
df2.duplicated(subset=["col1"])  # 单独看col1:全部是1,后面全部是重复的
0    False
1     True
2     True
3     True
4     True
5     True
6     True
7     True
8     True
9     True
dtype: bool

上面的两个例子都是看单个字段是否重复,下面的例子是通过查看多个属性:

df2.duplicated(subset=["col3","col4"])  # 同时看col3和col4

0    False
1     True
2    False
3     True
4     True
5     True
6     True
7    False
8    False
9     True
dtype: bool

2.4参数keep

df2.duplicated(subset=["col3"],keep="last"

0     True
1     True
2     True
3     True
4     True
5     True
6     True
7    False   # 第一次出现
8     True
9    False   # 第一次出现
dtype: bool
  • 上面的keep参数使用的是last,相当于是最后的一条数据是初始值,前面的值和它进行比较,是否有重复值
  • 下面的案例中keep使用的first(默认),相当于是将第一次出现的数据看做是初始值,后面的数据和它相比;如果重复标记为True
df2.duplicated(subset=["col3"],keep="first")   # 默认是first

0    False  # 第一次出现
1     True
2    False  # 第一次出现
3     True
4     True
5     True
6     True
7     True
8     True
9     True
dtype: bool
  
df2.duplicated(subset=["col3"],keep=False)   # 将所有的重复值标记为True

0    True
1    True
2    True
3    True
4    True
5    True
6    True
7    True
8    True
9    True
dtype: bool

三、drop_duplicates()

该函数的作用是删除数据中的重复值

3.1语法形式

  • subset:表示按照指定的一个或者多个列属性来删除重复值,可选性;默认是全部列属性
  • keep:表示删除重复值后保留的数据,默认是保留第一条数据
  • inplace:表示删除重复是生成副本,还是直接在原数据上进行修改。这个参数的功能在pandas的功能都是如此
  • ingoore_index:生成数据的索引是元数据的,还是从0,1,2...到n-1的自然数排列

下面是来自官网的参数解释:

3.2全部使用默认参数

上面的结果有两个特点:

  • 索引还是原数据的索引
  • 保留的数据是每条值的第一条(如果存在重复值)
  • 判断是否重复,使用的是全部列属性
  • 上面的数据就是下面判断是否重复的为False的数据(对比序号)

3.3参数subset

subset是可以指定我们想通过哪些属性来进行删除:

1、通过单个属性字段来删除

2、通过多个字段属性来删除

3.4参数keep

keep参数保留我们想要的数据:第一条还是最后一条

1、keep="first"

image-20210712130038445

2、keep="last"

通过duplicated()查看数据是否重复,可以看多索引为7和9的数据为False,因为它们是最后一次出现

3.5参数ignore_index

该参数表示的是生成数据的索引是原数据的索引还是直接重新排名

3.6参数inplace

如果是使用默认值False:

如果inplace使用True,不会生成数据,因为是在原数据的基础上修改的,导致原数据直接变化了:我们直接看df2

四、实战案例

在文章的最开始,我们已经导入了数据,几点需求说明:

  • 每个订单可能存在多个状态,也可能只存在一个
  • 我们想要找出最终的订单状态为“通过”的订单的所有数据

比如订单S1,存在3条状态,有两条是通过的,但是我们只想取出最近的一条通过的数据:2021-01-06

解决步骤1:先找出通过的全部订单,发现只有S7没有通过

通过下面的代码也能够找出最终是通过的订单:

order_pass = df1.query("状态 == '通过'")["订单号"].unique()
order_pass

解决步骤2:筛选出最终状态为通过的订单信息,下面提供了两种方式

解决步骤3:对df3进行去重即可

df3.drop_duplicates(
  subset="订单号",  # 根据订单号去重
  keep="last",  # 保留最后一条
  inplace=True,  # 原地修改
  ignore_index=True  # 索引重排
)

df3  # 结果中没有S7

五、Pandas连载文章

Pandas的文章已经形成连载,欢迎关注阅读:



推荐阅读


生日快乐:尤而小屋两周岁啦

55个案例:吃透Python字符串格式化

图解Pandas的缺失值处理

图解Pandas的排序机制sort_values

图解Pandas的排名rank机制


尤而小屋,一个温馨的小屋。小屋主人,一手代码谋求生存,一手掌勺享受生活,欢迎你的光临

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存