后大流行时期的生活213——民航飞机与呼吸道传染病感染风险【理论篇】
一、飞机内的通风系统
从空气循环的角度看,靠窗座位的感染风险要低于走道座位。
从换气效率的角度看,在起飞前和降落时机舱内的感染风险要高于飞机高空巡航时。
尽管机舱内的换气效率要好于绝大多数室内环境,但在实际应用中仍然会出现呼吸道疾病进行传染的情况。非常典型的传播案例发生在2003年SARS疫情期间(见下图),一架载有120名乘客由香港飞往北京的航班中在3小时的飞行过程中造成了22人感染[8]。
头等舱/商务舱的乘客密度要小于经济舱,但价格也更高。
经济舱中第一排和紧急出口旁边的座位整体空间更大,密度相对较低。
经济舱中最后几排座位有时会出现无人选择的情况,从而使得乘客密度相对较低,但机尾在遇到气流影响时会更加颠簸。
靠窗的座位略优于过道的座位。
过道的座位略优于中间的座位。
[1]Gendreau M, DeJohn C. Responding to medical events during commercial airline flights. N Engl J Med. 2002;346:1067–1073.
[2]National Research Council . The airline cabin environment: air quality and safety. National Academic Press; Washington, DC: 1986.
[3]WHO . Tuberculosis and air travel: guidelines for prevention and control. WHO/TB98.256. World Health Organization; Geneva, Switzerland: 1998.
[4]Spengler J, Wilson D (2003) Air quality in aircraft. Proc Inst Mech Eng Part E J Process Mech Eng 217(4):323–336
[5]Hunt , E. H. , Reid , D. H. , Space , D. R. and Tilton , F. E. 1995 . Commercial Airliner Environmental Control System: Engineering Aspects of Cabin Air Quality . Presented at the Aerospace Medical Association Annual Meeting, Anaheim, CA
[6]World Health Organization . 2006 . Tuberculosis and Air Travel: Guidelines for Prevention and Control , 2nd United Nations
[8]WHO . Consensus document on the epidemiology of severe acute respiratory syndrome (SARS). WHO/CDS/CSR/GAR/ 2003.11. World Health Organization; Geneva: 2003.
[9]Speake H, Phillips A, Chong T, Sikazwe C, Levy A, Lang J, et al. Flight-Associated Transmission of Severe Acute Respiratory Syndrome Coronavirus 2 Corroborated by Whole-Genome Sequencing. Emerg Infect Dis. 2020;26(12):2872-2880. https://doi.org/10.3201/eid2612.203910
[10]Y. Yan, X. Li, J. Tu Effects of passenger thermal plume on the transport and distribution characteristics of airborne particles in an airliner cabin section Sci. Technol. Built Environ., 22 (2) (2015), pp. 153-163
[11]S.B. Poussou, S. Mazumdar, M.W. Plesniak, P.E. Sojka, Q. Chen Flow and contaminant transport in an airliner cabin induced by a moving body: model experiments and CFD predictions Atmos. Environ., 44 (24) (2010), pp. 2830-2839
[12]G. N. Sze To,M. P. Wan,C. Y. H. Chao,L. Fang &A. Melikov,Experimental Study of Dispersion and Deposition of Expiratory Aerosols in Aircraft Cabins and Impact on Infectious Disease Transmission Pages 466-485 | Received 05 Jun 2008, Accepted 07 Jan 2009, Published online: 26 Feb 2009
[13]Gupta JK, Lin CH, Chen Q. Transport of expiratory droplets in an aircraft cabin. Indoor Air. 2011 Feb;21(1):3-11. doi: 10.1111/j.1600-0668.2010.00676.x. PMID: 21208287.
[14]Bhuvan KC, Shrestha R, Leggat PA, Ravi Shankar P, Shrestha S. Safety of air travel during the ongoing COVID-19 pandemic. Travel Med Infect Dis. 2021 Sep-Oct;43:102103. doi: 10.1016/j.tmaid.2021.102103. Epub 2021 Jun 7. PMID: 34111566; PMCID: PMC8180446.
[15]Ran Nir-Paz, Itamar Grotto, Israel Strolov, Asher Salmon, Michal Mandelboim, Ella Mendelson, Gili Regev-Yochay, Absence of in-flight transmission of SARS-CoV-2 likely due to use of face masks on board, Journal of Travel Medicine, Volume 27, Issue 8, December 2020, taaa117, https://doi.org/10.1093/jtm/taaa117