高精地图中地面标识识别技术历程与实践
思路
本文将主要介绍高德在高精地图地面标识识别上的技术演进,这些技术手段在不同时期服务了高精地图产线需求,为高德地图构建高精度地图提供了基础的技术保证。1. 地面标识识别
颜色:比如黄色、红色、白色等
形状:箭头形、各种文字数字形状、条形、多条形、面状、丘状等
尺寸:国标定义的标准箭头长度为9m,但也存在1m~2m甚至1m以下的地面标识元素,尤其减速带以及人行道等尺寸差异会更大,反映到图像中像素个数以及长宽比均会有较大差异。
地面标识磨损:地面标志由于磨损褪色、掉漆导致不完整或者严重不清晰
采集环境问题:遮挡(施工、车辆)、由于环境改变引起的材料激光反射率差异以及可见光不清晰(雨天、逆光等)
2. 识别起步
3.深度学习时代
深度学习时代是数据和硬件驱动的时代,结合部分人工标注以及自动化生成,我们拥有百万级的数据,而且各种场景的数据还在不断丰富,结合算法探索与创新,我们取得了越来越好的技术与业务效果。
图6.级联检测算法原理图
4)基于角点的检测
基于角点回归的目标检测方法,使用单个卷积神经网络预测两组热力图来表示不同物体类别的角的位置,即将目标边界框检测为一对关键点(即边界框的左上角和右下角),以及每个检测到的角点的嵌入向量。其中角点用于确定目标位置,嵌入向量用于对属于同一目标的一对角点进行分组。
此种方法简化了网络的输出,通过将目标检测为成对关键点,消除了现有的检测器设计中对特征层需要大量anchors的弊端,因为大量anchors造成了大量的重叠以及正负样本不均衡。同时为了产生更紧密的边界框,网络还预测偏移以精细调整角点的位置。通过预测热力图、嵌入向量、以及偏移最终得到了精确的边界框。
图 9 角点检测示意图
由于在检测任务中需要获取相同尺寸的特征图对目标进行位置回归、类别分类等,算法会对其进行量化以及降采样等操作,不可避免会有精度上的损失。这个弊端带来的最大影响就是经由检测回归出的位置不够鲁棒,在某些情况下会出现或多或少的偏移。
6)PAnet
基于以上考虑,我们采用了基于PAnet的检测识别算法。传统的实例分割模型各层中的信息传播不够充分。PAnet较好的解决了这些问题,充分融合了coarse、fine特征,不仅有自顶向下的特征融合还结合了自底向上的特征融合,在高层特征中充分融合进了底层的强定位特征,解决了浅层特征信息丢失的问题。
另外还结合了自适应特征降采样将不同特征层进行融合提取roi特征做预测,以及添加额外mask前景背景分类分支,使得预测mask更加精确,这些手段结合对于目标检测位置精度有比较大的收益。同时,分割和检测任务结合能够互相促进取得更好的结果。
图 12 PAnet 示意图
以下为一些算法的识别结果示例。可以看到算法对部分磨损模糊的地面标识也有了一定的宽容度,其位置精度有了巨大的改善。(图中地面标识外框为检测得到的大概位置,内框为根据像素级分割得到的位置,取内框为地面标识最终位置)。
图 13 检测识别实例
采用上述方案需要将点云投影为2D空间,中间有一定的归一化量化操作,不可避免的会损失一些信息,最直观的是在一些点云反射率较低的地方容易造成目标丢失。如果能够在原始3维点云上提取那么这些问题就迎刃而解。
7)基于3维点云的目标检测
基于上面的考虑,我们探索原始点云上的3D物体检测,3D点云识别是各种真实世界应用的一个重要组成部分,如自主导航、重建、VR/AR等。与基于图像的检测相比,激光雷达提供可靠的深度信息,可以用于精确定位物体并表征它们的形状。
我们探索了多种3维点云识别算法,比如基于bird-view、voxel等的3维点云识别。由于PointRCNN在原始3维点云目标检测上的良好表现,我们采用基于PointRCNN的方法提取地面标识,整个检测框架包括两个阶段:第一阶段将整个场景的点云分割为前景点和背景点,以自下而上的方式直接从点云生成少量高质量的3D proposal。
第二阶段在规范坐标中修改候选区域获得最终的检测结果,将每个proposal经池化后转换为规范坐标,以便更好地学习局部空间特征,同时与第一阶段中全局语义特征相结合,用于预测Box优化和置信度预测。
4. 效果与收益
上述方案已经正式上线,并处理了大量数据,准召率都达到了生产作业的要求,同时算法对人工作业产线的效率提升作用日益提高。以下是部分效果图:
5. 写在最后
高精地图被称作自动驾驶系统的“眼睛“,与普通地图最大的不同点在于使用主体不同。普通导航地图的使用者是人,用于导航、搜索,而高精地图的使用者是计算机,用于高精度定位、辅助环境感知、规划与决策。因而高精地图对地图要素不仅需要极高的召回率,还需要非常高的位置精度。
高精地图中要素的识别对技术提出了比较高的要求,纵观整个高精地图产业发展,地图制作逐渐从纯人工过渡到半自动乃至全自动。期间识别技术也不断得到发展与完善,从手动构造特征到自动特征、从2维识别到3维以及更高维识别、从单源识别到多源融合等。
目前,高精地图多采用人工作业,人工作业质量和效率始终是一个矛盾点,相比之下,机器自动识别有着更高的效率、更低的作业成本以及不亚于人工的作业质量。自动识别的应用必将加速高精地图构建,推动高精地图产业发展。高精度地面标识识别技术已经在高德高精地图内部得到应用,有效提升了数据制作效率与制作质量,为高德构建高精地图提供坚实的技术支撑。
深度学习在道路封闭挖掘方案的探索与实践
高德地图首席科学家任小枫:视觉智能在高德地图的应用