政治经济
深圳大学&北京大学Adv. Funct. Mater.:揭示锂电池产气机制促进电池安全使用
长期高精度气体检测能力。设计和开发一种多功能的原位DEMS设备,该设备应满足以下要求,包括长时间测试、挥发性电解质冷凝和补充系统、高灵敏度的气体检测、标准的和可重复的气体测试协议等。在商用电池测试中,通常在数百次循环后会出现胀气现象,这远远超出了DEMS的能力。因此,需要DEMS具备长期测试能力,能够在电池长期循环过程中进行原位气的演化分析。通常情况下,DEMS设备中电池产生的气体含量是有限的,不同批次对应的量化结果很难重复,因此一种可靠的、通用的产气测试标准非常重要,Jie等人已经证明了这一点。 科学的气体检测工艺设计。科学探讨产气机理是揭示锂电池衰减过程的关键,与其它高分辨率表征技术相结合,可以从根本上阐明内部复杂的化学反应。考虑到交叉反应引起的复杂性,建议将应用的正极和负极分开研究(即半电池),LiFePO4可以作为重要的参考。然后,建议后续进行全电池气体演化研究,通过研究气体种类和含量来分析串扰反应。 不同条件下电池产气测试的相关性探讨。对正常工作条件和热失控情况(高温、过充、短路等)下的产气行为进行系统研究,有利于建立两种产气演化机制之间的相关性。通过分析内部相关性,可以精确地提出更有效的气体抑制措施。到目前为止,大多数研究都是将这两种情况分开进行研究,这不利于对电池气体演化过程的全面认识。因此,建立这两种背景下的产气关联机制具有重要意义。 先进的综合检测技术。需要在开发精确的检测技术方面作出更多努力。原位DEMS提供了气体产气电压位点和气体含量等信息,可与其他技术相结合,探测固体和液体反应产物,以推演气体生成机制,如原位高分辨率透射电镜和核磁共振波谱。 多种抑制气体方案并行。电池内产气源很多,所以所有可能产生气体的组分都应该在电池组装前进行修饰和优化。所总结的气体抑制方法,包括缓冲层的构建、电解质的优化、测试条件的选择等,都不是最合适的技术,需要进一步改进。例如,涂层在电极表面的覆盖范围往往是不均匀的,导致界面持续副反应和气体产生。 深入开展气体演化研究。正常状态和热失控情况下的气体生成机理分析和抑制方案开发,可以解决电池的安全问题,同时提高电化学性能。气体分析技术是实现高安全、高电化学性能锂电池的一种高效、有价值的技术。在电池实际应用中,对气体演化的深入研究值得重视。