基于Prometheus的监控系统实践
来自:知乎,作者:tonnie链接:https://zhuanlan.zhihu.com/p/101184971
单位时间接收到的请求数量 单位时间内请求的成功率/失败率 请求的平均处理耗时
支持 PromQL(一种查询语言),可以灵活地聚合指标数据
部署简单,只需要一个二进制文件就能跑起来,不需要依赖分布式存储
Go 语言编写,组件更方便集成在同样是Go编写项目代码中
原生自带 WebUI,通过 PromQL 渲染时间序列到面板上
生态组件众多,Alertmanager,Pushgateway,Exporter……
使用基础 Unit(如 seconds 而非 milliseconds)
指标名以 application namespace 作为前缀,如:
process_cpu_seconds_total
http_request_duration_seconds
用后缀来描述 Unit,如:
http_request_duration_seconds
node_memory_usage_bytes
http_requests_total
process_cpu_seconds_total
foobar_build_info
Prometheus 提供了以下基本的指标类型:
Counter:代表一种样本数据单调递增的指标,即只增不减,通常用来统计如服务的请求数,错误数等。
Gauge:代表一种样本数据可以任意变化的指标,即可增可减,通常用来统计如服务的CPU使用值,内存占用值等。
Histogram 和 Summary:用于表示一段时间内的数据采样和点分位图统计结果,通常用来统计请求耗时或响应大小等。
Prometheus 是基于时间序列存储的,首先了解一下什么是时间序列,时间序列的格式类似于(timestamp,value)这种格式,即一个时间点拥有一个对应值,例如生活中很常见的天气预报,如:[(14:00,27℃),(15:00,28℃),(16:00,26℃)],就是一个单维的时间序列,这种按照时间戳和值存放的序列也被称之为向量(vector)。
每一组唯一的标签集合对应着一个唯一的向量(vector),也可叫做一个时间序列(Time Serie),当在某一个时间点来看它时,它是一个瞬时向量(Instant Vector),瞬时向量的时序只有一个时间点以及它对于的一个值,比如:今天 12:05:30 时服务器的 CPU 负载;而在一个时间段来看它时,它是一个范围向量(Range Vector),范围向量对于着一组时序数据,比如:今天11:00到12:00时服务器的CPU负载。
类似的,可以通过指标名和标签集来查询符合条件的时间序列:
http_requests{host="host1",service="web",code="200",env="test"}
查询结果会是一个瞬时向量:
http_requests{host="host1",service="web",code="200",env="test"} 10
http_requests{host="host2",service="web",code="200",env="test"} 0
http_requests{host="host3",service="web",code="200",env="test"} 12
而如果给这个条件加上一个时间参数,查询一段时间内的时间序列:
http_requests{host="host1",service="web",code="200",env="test"}[:5m]
结果将会是一个范围向量:
http_requests{host="host1",service="web",code="200",env="test"} 0 4 6 8 10
http_requests{host="host2",service="web",code="200",env="test"} 0 0 0 0 0
http_requests{host="host3",service="web",code="200",env="test"} 0 2 5 9 12
rate(http_requests{host="host1",service="web",code="200",env="test"}[:5m])
比如要求最近5分钟请求的增长量,可以用以下的 PromQL:
increase(http_requests{host="host1",service="web",code="200",env="test"}[:5m])
要计算过去10分钟内第90个百分位数:
histogram_quantile(0.9, rate(employee_age_bucket_bucket[10m]))
在 Prometheus 中,一个指标(即拥有唯一的标签集的 metric)和一个(timestamp,value)组成了一个样本(sample),Prometheus 将采集的样本放到内存中,默认每隔2小时将数据压缩成一个 block,持久化到硬盘中,样本的数量越多,Prometheus占用的内存就越高,因此在实践中,一般不建议用区分度(cardinality)太高的标签,比如:用户IP,ID,URL地址等等,否则结果会造成时间序列数以指数级别增长(label数量相乘)。
除了控制样本数量和大小合理之外,还可以通过降低 storage.tsdb.min-block-duration 来加快数据落盘时间和增加 scrape interval 的值提高拉取间隔来控制 Prometheus 的占用内存。
relabel_configs:
- source_labels: [__address__]
modulus: 3
target_label: __tmp_hash
action: hashmod
- source_labels: [__tmp_hash]
regex: $(PROM_ID)
action: keep
relabel_configs:
- source_labels: ["__meta_consul_dc"]
regex: "dc1"
action: keep
Querier 收到一个请求时,它会向相关的 Sidecar 发送请求,并从他们的 Prometheus 服务器获取时间序列数据。 它将这些响应的数据聚合在一起,并对它们执行 PromQL 查询。它可以聚合不相交的数据也可以针对 Prometheus 的高可用组进行数据去重。
Pushgateway可以替代拉模型来作为指标的收集方案,但在这种模式下会带来许多负面影响:
最后再来聊一下Alertmanager,简单说 Alertmanager 是与 Prometheus 分离的告警组件,主要接收 Promethues 发送过来的告警事件,然后对告警进行去重,分组,抑制和发送,在实际中可以搭配 webhook 把告警通知发送到企业微信或钉钉上,其架构图如下:
为了部署 Prometheus 实例,需要声明 Prometheus 的 StatefulSet,Pod 中包括了三个容器,分别是 Prometheus 以及绑定的 Thanos Sidecar,最后再加入一个 watch 容器,来监听 prometheus 配置文件的变化,当修改 ConfigMap 时就可以自动调用Prometheus 的 Reload API 完成配置加载,这里按照之前提到的数据分区的方式,在Prometheus 启动前加入一个环境变量 PROM_ID,作为 Relabel 时 hashmod 的标识,而 POD_NAME 用作 Thanos Sidecar 给 Prometheus 指定的 external_labels.replica 来使用:
apiVersion: apps/v1
kind: StatefulSet
metadata:
name: prometheus
labels:
app: prometheus
spec:
serviceName: "prometheus"
updateStrategy:
type: RollingUpdate
replicas: 3
selector:
matchLabels:
app: prometheus
template:
metadata:
labels:
app: prometheus
thanos-store-api: "true"
spec:
serviceAccountName: prometheus
volumes:
- name: prometheus-config
configMap:
name: prometheus-config
- name: prometheus-data
hostPath:
path: /data/prometheus
- name: prometheus-config-shared
emptyDir: {}
containers:
- name: prometheus
image: prom/prometheus:v2.11.1
args:
- --config.file=/etc/prometheus-shared/prometheus.yml
- --web.enable-lifecycle
- --storage.tsdb.path=/data/prometheus
- --storage.tsdb.retention=2w
- --storage.tsdb.min-block-duration=2h
- --storage.tsdb.max-block-duration=2h
- --web.enable-admin-api
ports:
- name: http
containerPort: 9090
volumeMounts:
- name: prometheus-config-shared
mountPath: /etc/prometheus-shared
- name: prometheus-data
mountPath: /data/prometheus
livenessProbe:
httpGet:
path: /-/healthy
port: http
- name: watch
image: watch
args: ["-v", "-t", "-p=/etc/prometheus-shared", "curl", "-X", "POST", "--fail", "-o", "-", "-sS", "http://localhost:9090/-/reload"]
volumeMounts:
- name: prometheus-config-shared
mountPath: /etc/prometheus-shared
- name: thanos
image: improbable/thanos:v0.6.0
command: ["/bin/sh", "-c"]
args:
- PROM_ID=`echo $POD_NAME| rev | cut -d '-' -f1` /bin/thanos sidecar
--prometheus.url=http://localhost:9090
--reloader.config-file=/etc/prometheus/prometheus.yml.tmpl
--reloader.config-envsubst-file=/etc/prometheus-shared/prometheus.yml
env:
- name: POD_NAME
valueFrom:
fieldRef:
fieldPath: metadata.name
ports:
- name: http-sidecar
containerPort: 10902
- name: grpc
containerPort: 10901
volumeMounts:
- name: prometheus-config
mountPath: /etc/prometheus
- name: prometheus-config-shared
mountPath: /etc/prometheus-shared
因为 Prometheus 默认是没办法访问 Kubernetes 中的集群资源的,因此需要为之分配RBAC:
apiVersion: v1
kind: ServiceAccount
metadata:
name: prometheus
---
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: prometheus
namespace: default
labels:
app: prometheus
rules:
- apiGroups: [""]
resources: ["services", "pods", "nodes", "nodes/proxy", "endpoints"]
verbs: ["get", "list", "watch"]
- apiGroups: [""]
resources: ["configmaps"]
verbs: ["create"]
- apiGroups: [""]
resources: ["configmaps"]
resourceNames: ["prometheus-config"]
verbs: ["get", "update", "delete"]
- nonResourceURLs: ["/metrics"]
verbs: ["get"]
---
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
name: prometheus
namespace: default
labels:
app: prometheus
subjects:
- kind: ServiceAccount
name: prometheus
namespace: default
roleRef:
kind: ClusterRole
name: prometheus
apiGroup: ""
接着 Thanos Querier 的部署比较简单,需要在启动时指定 store 的参数为dnssrv+thanos-store-gateway.default.svc来发现Sidecar:
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: thanos-query
name: thanos-query
spec:
replicas: 2
selector:
matchLabels:
app: thanos-query
minReadySeconds: 5
strategy:
type: RollingUpdate
rollingUpdate:
maxSurge: 1
maxUnavailable: 1
template:
metadata:
labels:
app: thanos-query
spec:
containers:
- args:
- query
- --log.level=debug
- --query.timeout=2m
- --query.max-concurrent=20
- --query.replica-label=replica
- --query.auto-downsampling
- --store=dnssrv+thanos-store-gateway.default.svc
- --store.sd-dns-interval=30s
image: improbable/thanos:v0.6.0
name: thanos-query
ports:
- containerPort: 10902
name: http
- containerPort: 10901
name: grpc
livenessProbe:
httpGet:
path: /-/healthy
port: http
---
apiVersion: v1
kind: Service
metadata:
labels:
app: thanos-query
name: thanos-query
spec:
type: LoadBalancer
ports:
- name: http
port: 10901
targetPort: http
selector:
app: thanos-query
---
apiVersion: v1
kind: Service
metadata:
labels:
thanos-store-api: "true"
name: thanos-store-gateway
spec:
type: ClusterIP
clusterIP: None
ports:
- name: grpc
port: 10901
targetPort: grpc
selector:
thanos-store-api: "true"
部署Thanos Ruler:apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: thanos-rule
name: thanos-rule
spec:
replicas: 1
selector:
matchLabels:
app: thanos-rule
template:
metadata:
labels:
labels:
app: thanos-rule
spec:
containers:
- name: thanos-rule
image: improbable/thanos:v0.6.0
args:
- rule
- --web.route-prefix=/rule
- --web.external-prefix=/rule
- --log.level=debug
- --eval-interval=15s
- --rule-file=/etc/rules/thanos-rule.yml
- --query=dnssrv+thanos-query.default.svc
- --alertmanagers.url=dns+http://alertmanager.default
ports:
- containerPort: 10902
name: http
volumeMounts:
- name: thanos-rule-config
mountPath: /etc/rules
volumes:
- name: thanos-rule-config
configMap:
name: thanos-rule-config
部署 Pushgateway:
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: pushgateway
name: pushgateway
spec:
replicas: 15
selector:
matchLabels:
app: pushgateway
template:
metadata:
labels:
app: pushgateway
spec:
containers:
- image: prom/pushgateway:v1.0.0
name: pushgateway
ports:
- containerPort: 9091
name: http
resources:
limits:
memory: 1Gi
requests:
memory: 512Mi
---
apiVersion: v1
kind: Service
metadata:
labels:
app: pushgateway
name: pushgateway
spec:
type: LoadBalancer
ports:
- name: http
port: 9091
targetPort: http
selector:
app: pushgateway
部署 Alertmanager:
apiVersion: apps/v1
kind: Deployment
metadata:
name: alertmanager
spec:
replicas: 3
selector:
matchLabels:
app: alertmanager
template:
metadata:
name: alertmanager
labels:
app: alertmanager
spec:
containers:
- name: alertmanager
image: prom/alertmanager:latest
args:
- --web.route-prefix=/alertmanager
- --config.file=/etc/alertmanager/config.yml
- --storage.path=/alertmanager
- --cluster.listen-address=0.0.0.0:8001
- --cluster.peer=alertmanager-peers.default:8001
ports:
- name: alertmanager
containerPort: 9093
volumeMounts:
- name: alertmanager-config
mountPath: /etc/alertmanager
- name: alertmanager
mountPath: /alertmanager
volumes:
- name: alertmanager-config
configMap:
name: alertmanager-config
- name: alertmanager
emptyDir: {}
---
apiVersion: v1
kind: Service
metadata:
labels:
name: alertmanager-peers
name: alertmanager-peers
spec:
type: ClusterIP
clusterIP: None
selector:
app: alertmanager
ports:
- name: alertmanager
protocol: TCP
port: 9093
targetPort: 9093
最后部署一下 ingress,大功告成:
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: pushgateway-ingress
annotations:
kubernetes.io/ingress.class: "nginx"
nginx.ingress.kubernetes.io/upstream-hash-by: "$request_uri"
nginx.ingress.kubernetes.io/ssl-redirect: "false"
spec:
rules:
- host: $(DOMAIN)
http:
paths:
- backend:
serviceName: pushgateway
servicePort: 9091
path: /metrics
---
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: prometheus-ingress
annotations:
kubernetes.io/ingress.class: "nginx"
spec:
rules:
- host: $(DOMAIN)
http:
paths:
- backend:
serviceName: thanos-query
servicePort: 10901
path: /
- backend:
serviceName: alertmanager
servicePort: 9093
path: /alertmanager
- backend:
serviceName: thanos-rule
servicePort: 10092
path: /rule
- backend:
serviceName: grafana
servicePort: 3000
path: /grafana
访问 Prometheus 地址,监控节点状态正常:
- END -
往期推荐:
最小成本落地微服务 DevOps 管道,CI/CD到 K8s
Kubernetes Master 误执行 reset,雪崩
Kubernetes 上对应用程序进行故障排除的 6 个技巧
订阅,一起成长
K8s生态圈
点在看,K8s一年不出问题 👇