查看原文
其他

游戏学术速递[1.10]

格林先生MrGreen arXiv每日学术速递 2022-05-05

Update!H5支持摘要折叠,体验更佳!点击阅读原文访问arxivdaily.com,涵盖CS|物理|数学|经济|统计|金融|生物|电气领域,更有搜索、收藏等功能!


cs.GT游戏,共计2篇


【1】 Asymptotic Security using Bayesian Defense Mechanisms with Application to Cyber Deception
标题:基于贝叶斯防御机制的渐近安全性及其在网络欺骗中的应用
链接:https://arxiv.org/abs/2201.02351

作者:Hampei Sasahara,Henrik Sandberg
备注:16 pages
摘要:This study addresses the question whether model knowledge can prevent a defender from being deceived or not in cyber security. As a specific model-based defense scheme, this study treats Bayesian defense mechanism, which monitors the system's behavior, forms a belief on existence of the attacker, and chooses appropriate reactions. Sophisticated attackers aim at achieving her objective while avoiding being detected by deceiving the defender. In this paper, their dynamic decision making is formulated as a stochastic signaling game. It is revealed that the belief on the true scenario has a limit in a stochastic sense at an equilibrium based on martingale analysis. This fact implies that there are only two possible cases: the defender asymptotically detects the attack with a firm belief or the attacker takes actions such that the system's behavior becomes nominal after a certain finite time step. Consequently, if the dynamics admits no stealthy attacks, the system is guaranteed to be secure in an asymptotic manner provided that effective countermeasures are implemented. The result concludes that model knowledge can prevent deception in an asymptotic sense. As an application of the finding, a defensive deception utilizing asymmetric recognition on vulnerabilities exploited by the attacker is analyzed. It is shown that, the attacker possibly stops the attack even if the defender is unaware of the vulnerabilities as long as the defender's unawareness is concealed by the defensive deception. Those results indicate the powerful defense capability achieved by model knowledge.

【2】 Distributed Nash Equilibrium Seeking over Time-Varying Directed Communication Networks
标题:时变有向通信网络上的分布式纳什均衡求解
链接:https://arxiv.org/abs/2201.02323

作者:Duong Thuy Anh Nguyen,Duong Tung Nguyen,Angelia Nedić
摘要:We study distributed algorithms for finding a Nash equilibrium (NE) in a class of non-cooperative convex games under partial information. Specifically, each agent has access only to its own smooth local cost function and can receive information from its neighbors in a time-varying directed communication network. To this end, we propose a distributed gradient play algorithm to compute a NE by utilizing local information exchange among the players. In this algorithm, every agent performs a gradient step to minimize its own cost function while sharing and retrieving information locally among its neighbors. The existing methods impose strong assumptions such as balancedness of the mixing matrices and global knowledge of the network communication structure, including Perron-Frobenius eigenvector of the adjacency matrix and other graph connectivity constants. In contrast, our approach relies only on a reasonable and widely-used assumption of row-stochasticity of the mixing matrices. We analyze the algorithm for time-varying directed graphs and prove its convergence to the NE, when the agents' cost functions are strongly convex and have Lipschitz continuous gradients. Numerical simulations are performed for a Nash-Cournot game to illustrate the efficacy of the proposed algorithm.

机器翻译,仅供参考

点击“阅读原文”获取带摘要的学术速递

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存