查看原文
其他

多媒体学术速递[1.10]

格林先生MrGreen arXiv每日学术速递 2022-05-05

Update!H5支持摘要折叠,体验更佳!点击阅读原文访问arxivdaily.com,涵盖CS|物理|数学|经济|统计|金融|生物|电气领域,更有搜索、收藏等功能!


cs.MM多媒体,共计3篇


【1】 Security Considerations for Virtual Reality Systems
标题:虚拟现实系统的安全注意事项
链接:https://arxiv.org/abs/2201.02563

作者:Karthik Viswanathan
摘要:There is a growing need for authentication methodology in virtual reality applications. Current systems assume that the immersive experience technology is a collection of peripheral devices connected to a personal computer or mobile device. Hence there is a complete reliance on the computing device with traditional authentication mechanisms to handle the authentication and authorization decisions. Using the virtual reality controllers and headset poses a different set of challenges as it is subject to unauthorized observation, unannounced to the user given the fact that the headset completely covers the field of vision in order to provide an immersive experience. As the need for virtual reality experiences in the commercial world increases, there is a need to provide other alternative mechanisms for secure authentication. In this paper, we analyze a few proposed authentication systems and reached a conclusion that a multidimensional approach to authentication is needed to address the granular nature of authentication and authorization needs of a commercial virtual reality applications in the commercial world.

【2】 Bayesian Neural Networks for Reversible Steganography
标题:用于可逆隐写的贝叶斯神经网络
链接:https://arxiv.org/abs/2201.02478

作者:Ching-Chun Chang
摘要:Recent advances in deep learning have led to a paradigm shift in reversible steganography. A fundamental pillar of reversible steganography is predictive modelling which can be realised via deep neural networks. However, non-trivial errors exist in inferences about some out-of-distribution and noisy data. In view of this issue, we propose to consider uncertainty in predictive models based upon a theoretical framework of Bayesian deep learning. Bayesian neural networks can be regarded as self-aware machinery; that is, a machine that knows its own limitations. To quantify uncertainty, we approximate the posterior predictive distribution through Monte Carlo sampling with stochastic forward passes. We further show that predictive uncertainty can be disentangled into aleatoric and epistemic uncertainties and these quantities can be learnt in an unsupervised manner. Experimental results demonstrate an improvement delivered by Bayesian uncertainty analysis upon steganographic capacity-distortion performance.

【3】 Unwinding Rotations Improves User Comfort with Immersive Telepresence Robots
标题:使用身临其境的网真机器人,展开旋转可提高用户舒适度
链接:https://arxiv.org/abs/2201.02392

作者:Markku Suomalainen,Basak Sakcak,Adhi Widagdo,Juho Kalliokoski,Katherine J. Mimnaugh,Alexis P. Chambers,Timo Ojala,Steven M. LaValle
备注:Accepted for publication in HRI (Int. Conf. on Human-Robot Interaction) 2022
摘要:We propose unwinding the rotations experienced by the user of an immersive telepresence robot to improve comfort and reduce VR sickness of the user. By immersive telepresence we refer to a situation where a 360\textdegree~camera on top of a mobile robot is streaming video and audio into a head-mounted display worn by a remote user possibly far away. Thus, it enables the user to be present at the robot's location, look around by turning the head and communicate with people near the robot. By unwinding the rotations of the camera frame, the user's viewpoint is not changed when the robot rotates. The user can change her viewpoint only by physically rotating in her local setting; as visual rotation without the corresponding vestibular stimulation is a major source of VR sickness, physical rotation by the user is expected to reduce VR sickness. We implemented unwinding the rotations for a simulated robot traversing a virtual environment and ran a user study (N=34) comparing unwinding rotations to user's viewpoint turning when the robot turns. Our results show that the users found unwound rotations more preferable and comfortable and that it reduced their level of VR sickness. We also present further results about the users' path integration capabilities, viewing directions, and subjective observations of the robot's speed and distances to simulated people and objects.

机器翻译,仅供参考

点击“阅读原文”获取带摘要的学术速递

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存