查看原文
其他

数学物理/复杂变量学术速递[1.10]

格林先生MrGreen arXiv每日学术速递 2022-05-05

Update!H5支持摘要折叠,体验更佳!点击阅读原文访问arxivdaily.com,涵盖CS|物理|数学|经济|统计|金融|生物|电气领域,更有搜索、收藏等功能!


math.MP数学物理,共计0篇

math.CV复杂变量,共计2篇


1.math.MP数学物理:

2.math.CV复杂变量:

【1】 A survey of Nevanlinna theory in the viewpoint of holomorphic forms
标题:从全纯形式看Nevanlinna理论
链接:https://arxiv.org/abs/2201.02360

作者:Xianjing Dong,Shuangshuang Yang
摘要:This paper revisits the Nevanlinna theory for meromorphic functions on $\mathbb C$ in the viewpoint of holomorphic forms. According to our observation, Nevanlinna's functions can be formulated by a holomorphic form. Applying this thought to Riemann surfaces, one then extends the definition of Nevanlinna's functions using a holomorphic form $\mathscr S$. With the new settings, an analogue of Nevanlinna theory on \emph{weak $\mathscr S$-exhausted Riemann surfaces} is obtained, which is viewed as a generalization of the classical Nevanlinna theory on $\mathbb C$ and $\mathbb D.$

【2】 Polynomial Dynamical Systems and Differentiation of Genus 4 Hyperelliptic Functions
标题:多项式动力系统与亏格4的超椭圆函数的微分
链接:https://arxiv.org/abs/2201.02462

作者:E. Yu. Bunkova
摘要:We give an explicit solution to the problem of differentiation of hyperelliptic functions in genus 4 case. We describe explicitly the polynomial Lie algebras and polynomial dynamical systems connected to this problem.

机器翻译,仅供参考

点击“阅读原文”获取带摘要的学术速递

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存