1 F. E. Otto et al., Attributing high-impact extreme events across timescales—A case study of four different types of events. Clim. Change 149, 399–412 (2018).2 C. B. Field et al., Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation: Special Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2012).3 M. K. van Aalst, The impacts of climate change on the risk of natural disasters. Disasters 30, 5–18 (2006).4 P. Wallemacq, Economic Losses, Poverty & Disasters: 1998-2017 (Centre for Research on the Epidemiology of Disasters, CRED, 2018).5 The World Bank, Urban development (2021). https://www.worldbank.org/en/topic/urbandevelopment/overview. Accessed 7 April 2020.6 E. H. Krueger, D. Borchardt, J. W. Jawitz, P. S. C. Rao, Balancing security, resilience, and sustainability of urban water supply systems in a desirable operating space. Environ. Res. Lett. 15, 035007 (2020).7 World Bank, Poverty and Shared Prosperity 2016: Taking on Inequality (World Bank, 2016).8 S. L. Cutter, “Urban risks and resilience” in Urban Informatics, S. Wenzhong, M. Goodchild, M. Batty, M.-P. Kwan, Eds. (Springer, 2021), pp. 197–211.9 S. L. Cutter et al., A place-based model for understanding community resilience to natural disasters. Glob. Environ. Change 18, 598–606 (2008).10 V. D. Blondel, A. Decuyper, G. Krings, A survey of results on mobile phone datasets analysis. EPJ Data Sci. 4, 10 (2015).11 S. Jiang et al., “A review of urban computing for mobile phone traces: Current methods, challenges and opportunities” in Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing (ACM, New York, NY, 2013), pp. 1–9.12 K. E. Joyce, S. E. Belliss, S. V. Samsonov, S. J. McNeill, P. J. Glassey, A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geogr. 33, 183–207 (2009).13 K. Muniz-Rodriguez et al., Social media use in emergency response to natural disasters: A systematic review with a public health perspective. Disaster Med. Public Health Prep. 14, 139–149 (2020).14 R. Wilson et al., Rapid and near real-time assessments of population displacement using mobile phone data following disasters: The 2015 Nepal earthquake. PLoS Curr. 8, ecurrents.dis.d073fbece328e4c39087bc086d694b5c (2016).15 X. Lu et al., Unveiling hidden migration and mobility patterns in climate stressed regions: A longitudinal study of six million anonymous mobile phone users in Bangladesh. Glob. Environ. Change 38, 1–7 (2016).16 T. Yabe, Y. Sekimoto, K. Tsubouchi, S. Ikemoto, Cross-comparative analysis of evacuation behavior after earthquakes using mobile phone data. PLoS One 14, e0211375 (2019).17 X. Lu, L. Bengtsson, P. Holme, Predictability of population displacement after the 2010 Haiti earthquake. Proc. Natl. Acad. Sci. U.S.A. 109, 11576–11581 (2012).18 X. Song, Q. Zhang, Y. Sekimoto, R. Shibasaki, “Prediction of human emergency behavior and their mobility following large-scale disaster” in Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, S. Macskassy, C. Perlich, Eds. (ACM, New York, NY, 2014), pp. 5–14.19 T. Yabe, K. Tsubouchi, N. Fujiwara, Y. Sekimoto, S. V. Ukkusuri, Understanding post-disaster population recovery patterns. J. R. Soc. Interface 17, 20190532 (2020).20 T. Yabe, Y. Zhang, S. V. Ukkusuri, Quantifying the economic impact of disasters on businesses using human mobility data: A Bayesian causal inference approach. EPJ Data Sci. 9, 36 (2020).21 T. Yabe, K. Tsubouchi, T. Shimizu, Y. Sekimoto, S. V. Ukkusuri, “Predicting evacuation decisions using representations of individuals’ pre-disaster web search behavior” in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, A. Teredesai, V. Kumar, Eds. (ACM, New York, NY, 2019), pp. 2707–2717.22 P. Schulman, E. Roe, Reliability and Risk: The Challenge of Managing Interconnected Infrastructures (Stanford University Press, 2016).23 M. Batty, Cities as Complex Systems: Scaling, Interaction, Networks, Dynamics and Urban Morphologies (Springer, 2009).24 L. M. A. Bettencourt, “Cities as complex systems” in Modeling Complex Systems for Public Policies, B. A. Furtado, P. A. M. Sakowski, M. H. Tóvolli, EDs. (Institute for Applied Economic Research, 2015), pp. 217–236.25 C. Finch, C. T. Emrich, S. L. Cutter, Disaster disparities and differential recovery in New Orleans. Popul. Environ. 31, 179–202 (2010).26 J. Aerts et al., Integrating human behaviour dynamics into flood disaster risk assessment. Nat. Clim. Chang. 8, 193–199 (2018).27 H. Klammler, P. Rao, K. Hatfield, Modeling dynamic resilience in coupled technological-social systems subjected to stochastic disturbance regimes. Environ. Syst. Decis. 38, 140–159 (2018).28 M. Chester et al., Infrastructure resilience to navigate increasingly uncertain and complex conditions in the anthropocene. npj Urban Sustain. 1, 1–6 (2021).29 S. K. Aksha, C. T. Emrich, Benchmarking community disaster resilience in Nepal. Int. J. Environ. Res. Public Health 17, 1985 (2020).30 National Academies of Sciences, Engineering, and Medicine, Building and Measuring Community Resilience: Actions for Communities and the Gulf Research Program (National Academies Press, 2019).31 M. Scheffer, S. Carpenter, J. A. Foley, C. Folke, B. Walker, Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).32 S. L. Cutter, The landscape of disaster resilience indicators in the USA. Nat. Hazards 80, 741–758 (2016).33 E. J. Sutley, S. Hamideh, An interdisciplinary system dynamics model for post-disaster housing recovery. Sustain. Resilient Infrastruct. 3, 109–127 (2018).34 T. Yabe, P. S. C. Rao, S. V. Ukkusuri, Resilience of interdependent urban socio-physical systems using large-scale mobility data: Modeling recovery dynamics. Sustain Cities Soc. 75, 103237 (2021).35 M. Ouyang, Review on modeling and simulation of interdependent critical infrastructure systems. Reliab. Eng. Syst. Saf. 121, 43–60 (2014).36 S. Dong, A. Esmalian, H. Farahmand, A. Mostafavi, An integrated physical-social analysis of disrupted access to critical facilities and community service-loss tolerance in urban flooding. Comput. Environ. Urban Syst. 80, 101443 (2020).37 A. Y. Grinberger, D. Felsenstein, Dynamic agent based simulation of welfare effects of urban disasters. Comput. Environ. Urban Syst. 59, 129–141 (2016).38 J. M. Links et al., Copewell: A conceptual framework and system dynamics model for predicting community functioning and resilience after disasters. Disaster Med. Public Health Prep. 12, 127–137 (2018).39 T. Kanno, S. Koike, T. Suzuki, K. Furuta, Human-centered modeling framework of multiple interdependency in urban systems for simulation of post-disaster recovery processes. Cogn. Technol. Work 21, 301–316 (2019).40 L. M. Bettencourt, The origins of scaling in cities. Science 340, 1438–1441 (2013).41 E. Krueger, C. Klinkhamer, C. Urich, X. Zhan, P. S. C. Rao, Generic patterns in the evolution of urban water networks: Evidence from a large Asian city. Phys. Rev. E 95, 032312 (2017).42 X. Zhan, S. V. Ukkusuri, P. S. C. Rao, Dynamics of functional failures and recovery in complex road networks. Phys. Rev. E 96, 052301 (2017).43 S. Yang et al., Spatial organization of human population and wastewater treatment plants in urbanized river basins. Water Resour. Res. 55, 6138–6152 (2019).44 A. Shreevastava, P. S. C. Rao, G. S. McGrath, Emergent self-similarity and scaling properties of fractal intra-urban heat islets for diverse global cities. Phys. Rev. E 100, 032142 (2019).45 E. Krueger et al., Resilience dynamics of urban water supply security and potential of tipping points. Earths Futur. 7, 1167–1191 (2019).46 M. Batty, The size, scale, and shape of cities. Science 319, 769–771 (2008).47 V. Verbavatz, M. Barthelemy, The growth equation of cities. Nature 587, 397–401 (2020).48 S. M. Rinaldi, J. P. Peerenboom, T. K. Kelly, Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE Control Syst. 21, 11–25 (2001).49 D. P. Aldrich, Building Resilience: Social Capital in Post-Disaster Recovery (University of Chicago Press, 2012).50 Pacific Disaster Center, Disasteraware (2021). https://www.pdc.org/disasteraware/. Accessed 5 December 2021.51 CrisisReady, Facebook data for good mobility dashboard (2021). https://www.crisisready.io/resources/facebook-mobility-map/. Accessed 5 December 2021.52 E. Ubaldi et al., Mobilkit: A python toolkit for urban resilience and disaster risk management analytics using high frequency human mobility data. arXiv [Preprint] (2021). https://arxiv.org/abs/2107.14297 (Accessed 23 January 2022).53 S. P. Tuler, K. Dow, T. Webler, Assessment of adaptation, policy, and capacity building outcomes from 14 processes. Environ. Sci. Policy 114, 275–282 (2020).54 W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A Containing Pap. Math. Phys. Character 115, 700–721 (1927).55 A. Wesolowski et al., Quantifying the impact of human mobility on malaria. Science 338, 267–270 (2012).56 S. Lai et al., Effect of non-pharmaceutical to contain COVID-19 in China. Nature 585, 410–413 (2020).57 M. Hilbert, Big data for development: A review of promises and challenges. Dev. Policy Rev. 34, 135–174 (2016).58 V. D. Blondel et al., Data for development: The D4D challenge on mobile phone data. arXiv [Preprint] (2012). https://arxiv.org/abs/1210.0137 (Accessed 23 January 2022).59 S. Lu et al., Understanding the representativeness of mobile phone location data in characterizing human mobility indicators. ISPRS Int. J. Geoinf. 6, 7 (2017).60 B. Schouten et al., Indicators for the representativeness of survey response. Surv. Methodol. 35, 101–113 (2009).