查看原文
其他

今日头条的面试题:LRU原理和Redis实现

点击关注 👉 Java技术图谱 2021-09-05
点击关注下方公众号,编程资料 都在这里
很久前参加过今日头条的面试,遇到一个题,目前半部分是如何实现 LRU,后半部分是 Redis 中如何实现 LRU。

我的第一反应是操作系统课程里学过,应该是内存不够的场景下,淘汰旧内容的策略。LRU ... Least Recent Used,淘汰掉最不经常使用的。

可以稍微多补充两句,因为计算机体系结构中,最大的最可靠的存储是硬盘,它容量很大,并且内容可以固化,但是访问速度很慢,所以需要把使用的内容载入内存中;内存速度很快,但是容量有限,并且断电后内容会丢失,并且为了进一步提升性能,还有CPU内部的 L1 Cache,L2 Cache等概念。

因为速度越快的地方,它的单位成本越高,容量越小,新的内容不断被载入,旧的内容肯定要被淘汰,所以就有这样的使用背景。

LRU原理


在一般标准的操作系统教材里,会用下面的方式来演示 LRU 原理,假设内存只能容纳3个页大小,按照 7 0 1 2 0 3 0 4 的次序访问页。假设内存按照栈的方式来描述访问时间,在上面的,是最近访问的,在下面的是,最远时间访问的,LRU就是这样工作的。


但是如果让我们自己设计一个基于 LRU 的缓存,这样设计可能问题很多,这段内存按照访问时间进行了排序,会有大量的内存拷贝操作,所以性能肯定是不能接受的。

那么如何设计一个LRU缓存,使得放入和移除都是 O(1) 的,我们需要把访问次序维护起来,但是不能通过内存中的真实排序来反应,有一种方案就是使用双向链表。

基于 HashMap 和 双向链表实现 LRU 的


整体的设计思路是,可以使用 HashMap 存储 key,这样可以做到 save 和 get key的时间都是 O(1),而 HashMap 的 Value 指向双向链表实现的 LRU 的 Node 节点,如图所示。


LRU 存储是基于双向链表实现的,下面的图演示了它的原理。其中 h 代表双向链表的表头,t 代表尾部。首先预先设置 LRU 的容量,如果存储满了,可以通过 O(1) 的时间淘汰掉双向链表的尾部,每次新增和访问数据,都可以通过 O(1)的效率把新的节点增加到对头,或者把已经存在的节点移动到队头。

下面展示了,预设大小是 3 的,LRU存储的在存储和访问过程中的变化。为了简化图复杂度,图中没有展示 HashMap部分的变化,仅仅演示了上图 LRU 双向链表的变化。我们对这个LRU缓存的操作序列如下:
save("key1", 7)
save("key2", 0)
save("key3", 1)
save("key4", 2)
get("key2")
save("key5", 3)
get("key2")
save("key6", 4)

相应的 LRU 双向链表部分变化如下:


总结一下核心操作的步骤:


完整基于 Java 的代码参考如下
class DLinkedNode { String key; int value; DLinkedNode pre; DLinkedNode post;}

LRU Cache
public class LRUCache { private Hashtable<Integer, DLinkedNode> cache = new Hashtable<Integer, DLinkedNode>(); private int count; private int capacity; private DLinkedNode head, tail; public LRUCache(int capacity) { this.count = 0; this.capacity = capacity; head = new DLinkedNode(); head.pre = null; tail = new DLinkedNode(); tail.post = null; head.post = tail; tail.pre = head; } public int get(String key) { DLinkedNode node = cache.get(key); if(node == null){ return -1; // should raise exception here. } // move the accessed node to the head; this.moveToHead(node); return node.value; } public void set(String key, int value) { DLinkedNode node = cache.get(key); if(node == null){ DLinkedNode newNode = new DLinkedNode(); newNode.key = key; newNode.value = value; this.cache.put(key, newNode); this.addNode(newNode); ++count; if(count > capacity){ // pop the tail DLinkedNode tail = this.popTail(); this.cache.remove(tail.key); --count; } }else{ // update the value. node.value = value; this.moveToHead(node); } } /** * Always add the new node right after head; */ private void addNode(DLinkedNode node){ node.pre = head; node.post = head.post; head.post.pre = node; head.post = node; } /** * Remove an existing node from the linked list. */ private void removeNode(DLinkedNode node){ DLinkedNode pre = node.pre; DLinkedNode post = node.post; pre.post = post; post.pre = pre; } /** * Move certain node in between to the head. */ private void moveToHead(DLinkedNode node){ this.removeNode(node); this.addNode(node); } // pop the current tail. private DLinkedNode popTail(){ DLinkedNode res = tail.pre; this.removeNode(res); return res; }}

那么问题的后半部分,是 Redis 如何实现,这个问题这么问肯定是有坑的,那就是redis肯定不是这样实现的。

Redis的LRU实现


如果按照HashMap和双向链表实现,需要额外的存储存放 next 和 prev 指针,牺牲比较大的存储空间,显然是不划算的。所以Redis采用了一个近似的做法,就是随机取出若干个key,然后按照访问时间排序后,淘汰掉最不经常使用的,具体分析如下:

为了支持LRU,Redis 2.8.19中使用了一个全局的LRU时钟,server.lruclock,定义如下,
#define REDIS_LRU_BITS 24unsigned lruclock:REDIS_LRU_BITS; /* Clock for LRU eviction */

默认的LRU时钟的分辨率是1秒,可以通过改变REDIS_LRU_CLOCK_RESOLUTION宏的值来改变,Redis会在serverCron()中调用updateLRUClock定期的更新LRU时钟,更新的频率和hz参数有关,默认为100ms一次,如下,
#define REDIS_LRU_CLOCK_MAX ((1<<REDIS_LRU_BITS)-1) /* Max value of obj->lru */#define REDIS_LRU_CLOCK_RESOLUTION 1 /* LRU clock resolution in seconds */ void updateLRUClock(void) { server.lruclock = (server.unixtime / REDIS_LRU_CLOCK_RESOLUTION) & REDIS_LRU_CLOCK_MAX;}

server.unixtime是系统当前的unix时间戳,当 lruclock 的值超出REDIS_LRU_CLOCK_MAX时,会从头开始计算,所以在计算一个key的最长没有访问时间时,可能key本身保存的lru访问时间会比当前的lrulock还要大,这个时候需要计算额外时间,如下,
/* Given an object returns the min number of seconds the object was never * requested, using an approximated LRU algorithm. */unsigned long estimateObjectIdleTime(robj *o) { if (server.lruclock >= o->lru) { return (server.lruclock - o->lru) * REDIS_LRU_CLOCK_RESOLUTION; } else { return ((REDIS_LRU_CLOCK_MAX - o->lru) + server.lruclock) * REDIS_LRU_CLOCK_RESOLUTION; }}

Redis支持和LRU相关淘汰策略包括,

  • volatile-lru 设置了过期时间的key参与近似的lru淘汰策略
  • allkeys-lru 所有的key均参与近似的lru淘汰策略
当进行LRU淘汰时,Redis按如下方式进行的,
...... /* volatile-lru and allkeys-lru policy */ else if (server.maxmemory_policy == REDIS_MAXMEMORY_ALLKEYS_LRU || server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU) { for (k = 0; k < server.maxmemory_samples; k++) { sds thiskey; long thisval; robj *o; de = dictGetRandomKey(dict); thiskey = dictGetKey(de); /* When policy is volatile-lru we need an additional lookup * to locate the real key, as dict is set to db->expires. */ if (server.maxmemory_policy == REDIS_MAXMEMORY_VOLATILE_LRU) de = dictFind(db->dict, thiskey); o = dictGetVal(de); thisval = estimateObjectIdleTime(o); /* Higher idle time is better candidate for deletion */ if (bestkey == NULL || thisval > bestval) { bestkey = thiskey; bestval = thisval; } } } ......

Redis会基于server.maxmemory_samples配置选取固定数目的key,然后比较它们的lru访问时间,然后淘汰最近最久没有访问的key,maxmemory_samples的值越大,Redis的近似LRU算法就越接近于严格LRU算法,但是相应消耗也变高,对性能有一定影响,样本值默认为5。

总结


看来,虽然一个简单的概念,在工业界的产品中,为了追求空间的利用率,也会采用权衡的实现方案。
来源:blog.csdn.net/hopeztm/article/details/79547052
近期热文推荐


点个

在看

你最好看


: . Video Mini Program Like ,轻点两下取消赞 Wow ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存