参考文献(上下滑动查看):1. Ives, J.R., et al.: Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr. Clin. Neurophysiol. 87(6), 417–420 (1993)2. Goldman, R.I., et al.: Acquiring simultaneous EEG and functional MRI. Clin. Neurophysiol. 111(11), 1974–1980 (2000)3. Abreu, R., Leal, A., Figueiredo, P.: EEG-informed fMRI: a review of data analysis methods. Front. Hum. Neurosci. 12, 29 (2018)4. Simoes, M., et al.: Correlated alpha activity with the facial expression processing network in a simultaneous EEG-fMRI experiment. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2017, 2562–2565 (2017)5. Poudel, G.R., et al.: Losing the struggle to stay awake: divergent thalamic and cortical activity during microsleeps. Hum. Brain Mapp. 35(1), 257–269 (2014)6. Noth, U., et al.: Simultaneous electroencephalography-functional MRI at 3 t: an analysis of safety risks imposed by performing anatomical reference scans with the EEG equipment in place. J. Magn. Reson. Imaging. 35(3), 561–571 (2012)7. Huster, R.J., et al.: Methods for simultaneous EEG-fMRI: an introductory review. J. Neurosci. 32(18), 6053–6060 (2012)8. Michels, L., et al.: Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands. PLoS One. 5(4), e10298 (2010)9. Kaufmann, C., et al.: Brain activation and hypothalamic functional connectivity during human non-rapid eye movement sleep: an EEG/fMRI study. Brain. 129(Pt 3), 655–667 (2006)10. Laufs, H., et al.: EEG-correlated fMRI of human alpha activity. NeuroImage. 19(4), 1463–1476 (2003)11. Goldman, R.I., et al.: Simultaneous EEG and fMRI of the alpha rhythm. NeuroReport. 13(18), 2487–2492 (2002)12. Liu, Z.M., He, B.: FMRI-EEG integrated cortical source imaging by use of time-variant spatial constraints. NeuroImage. 39(3), 1198–1214 (2008)13. Poudel, G.R., Innes, C.R.H., Jones, R.D.: Distinct neural correlates of time-on-task and transient errors during a visuomotor tracking task after sleep restriction. NeuroImage. 77, 105–113 (2013)14. Poudel, G.R., Innes, C.R.H., Jones, R.D.: Temporal evolution of neural activity and connectivity during microsleeps when rested and following sleep restriction. NeuroImage. 174, 263–273 (2018)15. Ogawa, S., et al.: Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. 87, 9868–9872 (1990)16. Arthurs, O.J., Boniface, S.: How well do we understand the neural origins of the fMRI bold signal? Trends Neurosci. 25(3), 169–169 (2002)17. Salek-Haddadi, A., et al.: Studying spontaneous EEG activity with fMRI. Brain Res. Rev. 43(1), 110–133 (2003)18. Buxton, R.B., Wong, E.C., Frank, L.R.: Dynamics of blood flow and oxygenation changes during brain activation; the balloon model. Magn. Reson. Med. 39, 855–864 (1998)19. Logothetis, N.K., et al.: Neurophysiological investigation of the basis of the fMRI signal. Nature. 412(6843), 150–157 (2001)20. Lindquist, M.A., et al.: Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling. NeuroImage. 45(1 Suppl), S187–S198 (2009)21. Menon, R.S., et al.: BOLD based functional MRI at 4 Tesla includes a capillary bed contribution: echo-planar imaging correlates with previous optical imaging using intrinsic signals. Magn. Reson. Med. 33(3), 453 (1995)22. Hu, X., Yacoub, E.: The story of the initial dip in fMRI. NeuroImage. 62(2), 1103–1108 (2012)23. Gras, V., et al.: Optimizing bold sensitivity in the 7t human connectome project resting-state fMRI protocol using plug-and-play parallel transmission. NeuroImage. 195, 1–10 (2019)24. Kim, S.-G., Ogawa, S.: Insights into new techniques for high resolution functional MRI. Curr. Opin. Neurobiol. 12(5), 607–615 (2002)25. Kashyap, S., et al.: Resolving laminar activation in human v1 using ultra-high spatial resolution fMRI at 7t. Sci. Rep. 8, 17063 (2018)26. Tsuchida, T.N., et al.: American clinical neurophysiology society: EEG guidelines introduction. J. Clin. Neurophysiol. 33(4), 301–302 (2016)27. Kirschstein, T., Kohling, R.: What is the source of the EEG? Clin. EEG Neurosci. 40(3), 146–149 (2009)28. Buzsaki, G., Anastassiou, C.A., Koch, C.: The origin of extracellular fields and currents–EEG, ECOG, LFP and spikes. Nat. Rev. Neurosci. 13(6), 407–420 (2012)29. Cajochen, C., Foy, R., Dijk, D.J.: Frontal predominance of a relative increase in sleep delta and theta EEG activity after sleep loss in humans. Sleep Res. Online. 2(3), 65–69 (1999)30. Accolla, E.A., et al.: Clinical correlates of frontal intermittent rhythmic delta activity (FIRDA). Clin. Neurophysiol. 122(1), 27–31 (2011)31. Makeig, S., Jung, T.P., Sejnowski, T.J.: Awareness during drowsiness: dynamics and electrophysiological correlates. Can. J. Exp. Psychol. 54(4), 266–273 (2000)32. Makeig, S., Jung, T.P.: Tonic, phasic, and transient EEG correlates of auditory awareness in drowsiness. Brain Res. Cogn. Brain Res. 4(1), 15–25 (1996)33. Brueggen, K., et al.: Early changes in alpha band power and dmn bold activity in Alzheimer’s disease: a simultaneous resting state EEG-fMRI study. Front. Aging Neurosci. 9, 319 (2017)34. Dang-Vu, T.T., et al.: Spontaneous neural activity during human slow wave sleep. Proc. Natl. Acad. Sci. U. S. A. 105(39), 15160–15165 (2008)35. Liu, Y., et al.: Top-down modulation of neural activity in anticipatory visual attention: control mechanisms revealed by simultaneous EEG-fMRI. Cereb. Cortex. 26(2), 517–529 (2016)36. Mullinger, K., et al.: Effects of simultaneous EEG recording on MRI data quality at 1.5, 3 and 7 tesla. Int. J. Psychophysiol. 67(3), 178–188 (2008)37. Hawsawi, H.B., Carmichael, D.W., Lemieux, L.: Safety of simultaneous scalp or intracranial EEG during MRI: a review. Front. Phys. 5, 42 (2017)38. Lemieux, L., et al.: Recording of EEG during fMRI experiments: patient safety. Magn. Reson. Med. 38(6), 943–952 (1997)39. Salek-Haddadi, A., et al.: EEG quality during simultaneous functional MRI of interictal epileptiform discharges. Magn. Reson. Imaging. 21(10), 1159–1166 (2003)40. Srivastava, G., et al.: Ica-based procedures for removing ballistocardiogram artifacts from EEG data acquired in the MRI scanner. NeuroImage. 24(1), 50–60 (2005)41. Jonmohamadi, Y., et al.: Source-space ICA for EEG source separation, localization, and timecourse reconstruction. NeuroImage. 101, 720–737 (2014)42. Toppi, J., et al.: Time-varying effective connectivity of the cortical neuroelectric activity associated with behavioural microsleeps. NeuroImage. 124(Pt A), 421–432 (2016)43. Bayer, M., Rubens, M.T., Johnstone, T.: Simultaneous EEG-fMRI reveals attention-dependent coupling of early face processing with a distributed cortical network. Biol. Psychol. 132, 133–142 (2018)44. Bonmassar, G., et al.: Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings. NeuroImage. 13(6), 1035–1043 (2001)45. Portas, C.M., et al.: Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron. 28(3), 991–999 (2000)46. Menon, V., Crottaz-Herbette, S.: Combined EEG and fMRI studies of human brain function. Neuroimaging. 66(Pt A), 291 (2005)47. Hall, D.A., et al.: “Sparse” temporal sampling in auditory fMRI. Hum. Brain Mapp. 7(3), 213–223 (1999)48. Schwarzbauer, C., et al.: Interleaved silent steady state (ISSS) imaging: a new sparse imaging method applied to auditory fMRI. NeuroImage. 29(3), 774–782 (2006)49. Poudel, G.R., et al.: Neural correlates of decision-making during a Bayesian choice task. NeuroReport. 28(4), 193–199 (2017)50. McGlashan, E.M., et al.: Imaging individual differences in the response of the human suprachiasmatic area to light. Front. Neurol. 9, 1022 (2018)51. Schabus, M., et al.: Neural correlates of sleep spindles as revealed by simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). J. Sleep Res. 15, 50–51 (2006)52. Fang, L., et al.: Simultaneous EEG-fMRI reveals spindle-related neural correlates of human intellectual abilities during NREM sleep. Sleep Med. 40, E99–E99 (2017)53. Mullinger, K.J., Castellone, P., Bowtell, R.: Best current practice for obtaining high quality EEG data during simultaneous fMRI. J. Vis. Exp. (76) (2013)54. Allen, P.J., Josephs, O., Turner, R.: A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage. 12(2), 230–239 (2000)55. Negishi, M., et al.: Removal of time-varying gradient artifacts from EEG data acquired during continuous fMRI. Clin. Neurophysiol. 115(9), 2181–2192 (2004)56. Niazy, R.K., et al.: Removal of fMRI environment artifacts from EEG data using optimal basis sets. NeuroImage. 28(3), 720–737 (2005)57. Ritter, P., Villringer, A.: Simultaneous EEG-fMRI. Neurosci. Biobehav. Rev. 30(6), 823–838 (2006)58. Chowdhury, M.E.H., et al.: Simultaneous EEG-fMRI: evaluating the effect of the EEG capcabling configuration on the gradient artifact. Front. Neurosci. 13, 690 (2019)59. Cunningham, C.J.B., et al.: Simultaneous EEG-fMRI in human epilepsy. Can. J. Neurol. Sci. 35(4), 420–435 (2008)60. Sartori, E., et al.: Gradient artifact removal in co-registration EEG/fMRI. World Congress on Medical Physics and Biomedical Engineering, Vol 25, Pt 4: Image Processing, Biosignal Processing, Modelling and Simulation. Biomechanics. 25, 1143–1146 (2010)61. Freyer, F., et al.: Ultrahigh-frequency EEG during fMRI: pushing the limits of imagingartifact correction. NeuroImage. 48(1), 94–108 (2009)62. de Munck, J.C., et al.: The hemodynamic response of the alpha rhythm: an EEG/fMRI study. NeuroImage. 35(3), 1142–1151 (2007)63. Moosmann, M., et al.: Realignment parameter-informed artefact correction for simultaneous EEG-fMRI recordings. NeuroImage. 45(4), 1144–1150 (2009)64. Ryali, S., et al.: Development, validation, and comparison of ICA-based gradient artifact reduction algorithms for simultaneous EEG-spiral in/out and echo-planar fMRI recordings. NeuroImage. 48(2), 348–361 (2009)65. Mantini, D., et al.: Complete artifact removal for EEG recorded during continuous fMRI using independent component analysis. NeuroImage. 34(2), 598–607 (2007)66. Chechile, R.A.: Independent component analysis: a tutorial introduction. J. Math. Psychol. 49(5), 426–426 (2005)67. Islam, M.K., Rastegarnia, A., Yang, Z.: Methods for artifact detection and removal from scalp EEG: a review. Clin. Neurophysiol. 46(4-5), 287–305 (2016)68. Acharjee, P.P., et al.: Independent vector analysis for gradient artifact removal in concurrent EEG-fMRI data. IEEE Trans. Biomed. Eng. 62(7), 1750–1758 (2015)69. Chowdhury, M.E.H., et al.: Reference layer artefact subtraction (RLAS): a novel method of minimizing EEG artefacts during simultaneous fMRI (vol 84, pg 307, 2014). NeuroImage. 98, 547–547 (2014)70. Maziero, D., et al.: Towards motion insensitive EEG-fMRI: correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system. NeuroImage. 138, 13–27 (2016)71. van der Meer, J.N., et al.: Carbon-wire loop based artifact correction outperforms postprocessing EEG/fMRI corrections-a validation of a real-time simultaneous EEG/fMRI correction method. NeuroImage. 125, 880–894 (2016)72. Abbott, D.E., et al.: Constructing carbon fiber motion-detection loops for simultaneous EEGfMRI. Front. Neurol. 5, 260 (2015)73. Debener, S., et al.: Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 t static magnetic field strength. Int. J. Psychophysiol. 67(3), 189–199 (2008)74. Grouiller, F., et al.: A comparative study of different artefact removal algorithms for EEG signals acquired during functional MRI. NeuroImage. 38(1), 124–137 (2007)75. Wang, K., et al.: Clustering-constrained ICA for ballistocardiogram artifacts removal in simultaneous EEG-fMRI. Front. Neurosci. 12, 59 (2018)76. Mayeli, A., et al.: Real-time EEG artifact correction during fMRI using ICA. J. Neurosci. Methods. 274, 27–37 (2016)77. Masterton, R.A.J., et al.: Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings. NeuroImage. 37(1), 202–211 (2007)78. Valdes-Sosa, P.A., et al.: Model driven EEG/fMRI fusion of brain oscillations. Hum. Brain Mapp. 30(9), 2701–2721 (2009)79. Dong, L., et al.: Simultaneous EEG-fMRI: trial level spatio-temporal fusion for hierarchically reliable information discovery. NeuroImage. 99, 28–41 (2014)80. Daunizeau, J., et al.: Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. NeuroImage. 36(1), 69–87 (2007)81. Singh, M., Patel, P., Al-Dayeh, L.: FMRI of brain activity during alpha rhythm. International Society for Magnetic Resonance in Medicine, Concord, CA (1998)82. Omata, K., et al.: Spontaneous slow fluctuation of EEG alpha rhythm reflects activity in deepbrain structures: a simultaneous EEG-fMRI study. PLoS One. 8(6), e66869 (2013)83. Ragazzoni, A., et al.: “Hit the missing stimulus”. A simultaneous EEG-fMRI study to localize the generators of endogenous ERPs in an omitted target paradigm. Sci. Rep. 9, 3684 (2019)84. Scheeringa, R., et al.: Frontal theta EEG activity correlates negatively with the default mode network in resting state. Int. J. Psychophysiol. 67(3), 242–251 (2008)85. Jann, K., et al.: Bold correlates of EEG alpha phase-locking and the fMRI default mode network. NeuroImage. 45(3), 903–916 (2009)86. Calhoun, V.D., et al.: Neuronal chronometry of target detection: fusion of hemodynamic and event-related potential data. NeuroImage. 30(2), 544–553 (2006)87. Moosmann, M., et al.: Joint independent component analysis for simultaneous EEG-fMRI: principle and simulation. Int. J. Psychophysiol. 67(3), 212–221 (2008)88. McKeown, M.J., et al.: Analysis of fMRI data by blind separation into independent spatial components. Hum. Brain Mapp. 6(3), 160–188 (1998)89. Kincses, Z.T., et al.: Model-free characterization of brain functional networks for motor sequence learning using fMRI. NeuroImage. 39(4), 1950–1958 (2008)90. Habas, C., Cabanis, E.A.: Dissociation of the neural networks recruited during a haptic objectrecognition task: complementary results with a tensorial independent component analysis. Am. J. Neuroradiol. 29(9), 1715–1721 (2008)91. Damoiseaux, J.S., et al.: Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U. S. A. 103(37), 13848–13853 (2006)92. Jonmohamadi, Y., et al.: Constrained temporal parallel decomposition for EEG-fMRI fusion. J. Neural Eng. 16(1), 016017 (2019)93. Laufs, H., et al.: Where the BOLD signal goes when alpha EEG leaves. NeuroImage. 31, 1408 (2006)94. Spiers, H.J., Maguire, E.A.: Neural substrates of driving behaviour. NeuroImage. 36(1), 245–255 (2007)95. Hutchison, K., et al.: Cortical activation can be visualized during sleep using simultaneous EEG-fMRI. Sleep. 30, A36–A37 (2007)96. Culham, J.C.: Functional neuroimaging: experimental design and analysis. In: Handbook of Functional Neuroimaging of Cognition, pp. 53–82. MIT Press, Cambridge, MA (2006)97. Dale, A.M.: Optimal experimental design for event-related fMRI. Hum. Brain Mapp. 8(2-3), 109–114 (1999)98. Hopfinger, J.B., Buonocore, M.H., Mangun, G.R.: The neural mechanisms of top-down attentional control. Nat. Neurosci. 3, 284–291 (2000)99. Weissman, D., et al.: The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978 (2006)100. Mechelli, A., et al.: Comparing event-related and epoch analysis in blocked design fMRI. NeuroImage. 18(3), 806–810 (2003)101. Visscher, K.M., et al.: Mixed blocked/event-related designs separate transient and sustained activity in fMRI. NeuroImage. 19(4), 1694–1708 (2003)102. Fox, M.D., et al.: The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. 102(27), 9673–9678 (2005)103. Critchley, H.D., et al.: Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study. J. Neurosci. 20(8), 3033 (2000)104. Spiers, H., Maguire, E.: Decoding human brain activity during real-world experiences. Trends Cogn. Sci. 11(8), 356–365 (2007) 小伙伴们点个“在看”,加(星标)关注茗创科技,将第一时间收到精彩内容推送哦~