A16Z:AIGC的行业应用,从生成式到合成式
The following article is from 阿法兔研究笔记 Author 阿法兔
A16Z 最近又发了一篇有意思的文章,谈到他们认为的生成式 AI 下一波趋势在哪。我们要注意三件事:第一,代码行数不是衡量工程生产力的好方法;第二,更长的产品内容,不一定就能起到更清楚的说明作用;第三,更长幻灯片,也不一定能提供更多见解
作者 | Zeya Yang and Kristina Shen
翻译 | 阿法兔
01
生成式 AI 在 B2B 场景
应用的变化
过去几年大家见证了大语言模型(LLM)逐步成为主流,并研究了这项技术在 B2B 领域的应用情况。尽管取得了巨大的技术进步,但我们认为,我们仍处于 B2B 用例的生成式 AI 应用的早期——第一波浪潮之中。
随着各公司逐步开发自己的应用,并且开始寻求围绕产品建立护城河,我们预计很多业务中的目标和实现方法,将会迭代到「第二波浪潮「之中。
如何理解这里的「迭代」?
到目前为止,绝大多数生成式 AI 应用,都集中在信息 divergence 之上。也就是说,目前的应用,主要是根据一组指令,来创造新的内容。
而在第二波生成式 AI 浪潮之中,相信市场会见证更多用于信息汇集的生成式 AI 应用,这些应用会通过综合现有信息,向我们展示更精细化、筛选出来的内容(That is, they will show us less content by synthesizing the information available.)为了和第一波生成式 AI 浪潮进行区分,我们把第二波生成式 AI 浪潮,称为合成人工智能(SynthAI)。
虽然第一波生成式 AI 浪潮在应用层创造了一些价值,但第二波生成式 AI 浪潮将带来下一步功能变化。
那么,下一步,生成式人工智能在 B2B 的解决方案会是什么走向?
结论是:B2B 解决方案之间的 PK,将不会把重点放在令人眼花缭乱的 AI 技术能力,而更关注这些技术层面的能力,将如何帮助企业用户具备(或重新定义)更有价值的企业工作流程。
第一波生成式 AI 浪潮:跨越从 C 端用户到企业的桥梁
为了分析第一波生成式 AI 浪潮,首先我们要对 B2C 和 B2B 应用进行区分。当我们作为消费者,应用生成式人工智能时,我们的目标是以玩耍、娱乐和分享为导向。在娱乐层面,质量和正确性并不是最重要的:而让人工智能模型生成艺术或音乐这类功能更为重要,因为我们可以在 Discord 频道中分享,当然也会很快就会忘记它。大家通常会有一种心理倾向,认为更多的内容=生产能力=好,所以,用户通常会被吸引到生成式的、自动创造的 AI 工具。
举个例子:ChatGPT 的兴起,就是很具备说服力的案例:因为用户真的容忍了这个聊天机器人很多质量上的缺陷,就是因为大家能用它,生成更丰富的内容,并且分享,令人印象深刻。
当涉及到 B2B 应用时,业务目标就不同了。这里的目标,主要是围绕时间和质量的成本效益评估。我们要么希望能够用同样的时间产生更高的质量,要么希望产生同样的质量,但是速度更快。
人们使用 B2B 应用主要是在工作场所,在这类的场景中,质量更重要。然而,今天人工智能生成的内容,主要是为重复性和低风险的工作提供的,这种业务层面上,要求通常不高。例如,生成式 AI 很可以为广告或产品描述撰写文案,许多这个领域的 B2B 应用,表现出明显的增长态势。
但我们随后也发现,生成式人工智能在撰写意见或论据方面确实不可靠(即使 AI 生成的内容令人信服或有信心,它也往往无法达到我们想要的准确程度)注意,当涉及到 B2B 生产环境中的创新和合作时,这一点更重要,大模型生成 SEO 信息也许是可用的。但是,如果让它为开发者撰写一篇详细新产品的博客文章,将会需要不小的人力去完善,以确保这篇文章是准确的,与目标受众产生共鸣。
另一个常见例子是 AI 用于编写销售的电子邮件,生成式 AI 对于普通的、冷冰冰的冷启动邮件是很有用的,但对于准确的个性化邮件来说就不太可靠了。从一个优秀销售的角度来看,生成式 AI 有助于在更短的时间内写出更多的电子邮件,但要写出能提高回复率,并带来订单的电子邮件(这也是对销售代表的评价),销售代表还是需要仔细研究,并通过自己判断,了解潜在客户想听什么。
从本质上讲,在头脑风暴和早期,第一波生成式人工智能对于更实质性的写作是成功的,但最终,越是需要创造力和领域内人专业知识,就越需要人为完善。
重构工作流程,
有何代价?有何好处?
即使在生成式 AI 对较长的博客文章有用的情况下,你的 Prompt 必须是精确的。也就是说作者必须已经对代表自己博客文章的实质概念,具备清晰认识。然后,为了得到良好的结果,作者必须对 AI 输出的结果进行审查,迭代 Prompt,不行的话,还要重写整个章节。
这里有个例子是用 ChatGPT 来生成法律文件,需要熟悉法律 prompt 的人提供所有需要的条款,然后 ChatGPT 可以用这些条款来生成草案。注意,AI 不能执行当事方之间的谈判过程,但一旦所有关键条款都确定下来,生成式 AI 就可以出品较长的法律类文件草稿。不过,这些工作仍需要职业律师对它进行审查,编辑输出,以使这项文件达到可以签署的出品样本。
这也是为什么这类成本+效益评估模式,会在 B2B 背景下打破。
知识工作者正在评估如何工作流程中增加一个额外的 AI 功能的步骤是否值得花时间?是否应该还是由我们自己做?
第二波生成式 AI 浪潮,
汇聚信息,从而改善决策
当我们进入第二波生成式 AI 浪潮的时候,焦点会从信息生成转向信息综合。注意,在知识工作中,决策能力具备巨大价值,而员工的报酬是根据不完善信息做出决定,而不一定是单纯执行或解释这些决定而产生的内容数量而决定的。在许多情况下,更长的时间并不意味着更好。
许多常识和公理都支持下列观点:
3. 更长幻灯片,也不一定能提供更多见解
Hex 公司创始人 Barry McCardel 认为,人机可以共生,比如说 LLM 如何能够改善我们的工作方式?
「AI 在这里是为了增强和改善人类的能力,而不是取代人类。
因为当涉及到理解世界和做出决策时,人类一定要参与其中。人工智能能做的是帮助人类将更多的脑电波,应用于有价值的、创造性的工作,这样我们不仅能在一天中花更多的时间来做重要的工作,而且还能解放自己,从事最有价值的工作。」
那么,AI 如何改善人类的决策?法律专家需要专注于综合和分析,提高决策的质量和/或速度(上面的 B2B 图),明显的应用是,去总结人类自己永远无法直接消化的大量信息。
SynthAI 在未来的真正价值是,帮助人类更快地做出更好的决定。
这里的设想几乎与 ChatGPT 的用户界面相反:与其根据简明的 Prompt 写出长篇大论的回复,如果我们能从海量数据中,逆向设计出总结的简明提示,会怎么样?(Instead of writing long-form responses based on a concise prompt, what if we could reverse engineer from massive amounts of data the concise prompt that summarizes it?)
这将有机会,让我们重新思考用户体验,使其尽可能有效地传达大量的信息。例如,像 Mem 这样由 AI 技术驱动的知识库,保存着某个组织中的所有会议笔记,可以主动对相关的决策、项目或人发起建议,当组织中的角色开始一个新项目时,应该参考这些决策、项目或人,从而节省了他们浏览先前机构沉淀知识的数个小时(甚至几天)的时间。
回到上面一个对外发送营销邮件的例子,一个潜在的表现是,AI 可以识别目标客户,究竟在何时会处于最高水平的购买意图(基于新闻报道、人才迁移等),并提醒相关销售代表。然后,人工智能模型将根据综合研究,建议在电子邮件中提一两个最重要的问题,以及与想要销售的目标客户最相关的产品功能。
这些输入,可以被输入到第一波生成式 AI 带来的解决方案中,但其价值来自于综合阶段,并为销售人员,节约了对单一潜在客户的研究时间。
确保这种综合信息质量足够高的根本转变是,从大规模的通用模型转向能够应用多种模型的架构,包括在特定领域和特定用途的数据集上训练的更精细模型。例如,某个构建客户支持应用的公司,会使用以支持为中心的模型,该模型可以访问公司的历史支持票据,但在其他情况下又会回到 GPT。在建设专有微调模型和数据集壁垒,这些组件会成为公司速度和质量的护城河。
SynthAI 的部署
当我们思考,第二波生成式 AI 浪潮可能是什么样的时候,我们相信从 SynthAI 中,受益最大的应用场景将是以下两种情况:
2. 高信噪比场景,主题或抽象出来的观点必须具备准确性
人工智能对工作流的改造,会带我们走向一个新的生产力时代。
关注 Founder Park,我们将持续推出更全面更深度的大模型相关讨论与报道。
如果你有投身大模型创业的想法,欢迎加入我们的大模型相关领域交流群,来一起探讨大模型时代创业的共识和认知。
长按识别二维码填写入群申请表
在 ChatGPT 发布后,我们迎来了一个全新的创业时代,似乎又回到了移动互联网早期——大量产品的方向和定义还不清楚的时代,我们希望把更多愿意思考和有创业意向的人聚集在一起,连接更多大模型领域的 doer(实干家),让更多有价值的认知在这里流动、碰撞、凝结,孵化出更多优秀的产品和项目。
Founder Park 计划搭建一个大模型相关领域的交流社区,面向有志于在大模型相关领域创业的创业者、产品经理、工程师、学者及投资人,围绕大模型相关创业的新项目、新赛道进行交流探讨。
在这里,你可以获得大模型相关领域的最新动态、高质量的对话交流,结识更多高净值的创业人群,同时,极客公园也会为优秀的项目提供资金、人才及其他资源的支持。
张鹏对话李志飞:大模型不只 OpenAI 一种做法,未来中国可能会有 50 家大模型
张鹏对谈傅盛、王俊煜、潘乱:大模型时代,产品经理的机会在哪里?