查看原文
其他

使用 tke-autoscaling-placeholder 实现秒级弹性伸缩

陈鹏 腾讯云原生 2021-03-12

roc,腾讯高级工程师,Kubernetes Contributor,热爱开源,专注云原生领域。目前主要负责腾讯云TKE 的售中、售后的技术支持,根据客户需求输出合理技术方案与最佳实践,为客户业务保驾护航。

背景

当 TKE 集群配置了节点池并启用了弹性伸缩,在节点资源不够时可以触发节点的自动扩容 (自动买机器并加入集群),但这个扩容流程需要一定的时间才能完成,在一些流量突高的场景,这个扩容速度可能会显得太慢,影响业务。tke-autoscaling-placeholder 可以用于在 TKE 上实现秒级伸缩,应对这种流量突高的场景。

原理是什么?

tke-autoscaling-placeholder 实际就是利用低优先级的 Pod 对资源进行提前占位(带 request 的 pause 容器,实际不怎么消耗资源),为一些可能会出现流量突高的高优先级业务预留部分资源作为缓冲,当需要扩容 Pod 时,高优先级的 Pod 就可以快速抢占低优先级 Pod 的资源进行调度,而低优先级的 tke-autoscaling-placeholder 的 Pod 则会被 "挤走",状态变成 Pending,如果配置了节点池并启用弹性伸缩,就会触发节点的扩容。这样,由于有了一些资源作为缓冲,即使节点扩容慢,也能保证一些 Pod 能够快速扩容并调度上,实现秒级伸缩。要调整预留的缓冲资源多少,可根据实际需求调整 tke-autoscaling-placeholder的 request 或副本数。

有什么使用限制?

使用该应用要求集群版本在 1.18 以上。

如何使用?

安装 tke-autoscaling-placeholder

在应用市场找到 tke-autoscaling-placeholder,点击进入应用详情,再点 创建应用:

选择要部署的集群 id 与 namespace,应用的配置参数中最重要的是 replicaCountresources.request,分别表示 tke-autoscaling-placeholder 的副本数与每个副本占位的资源大小,它们共同决定缓冲资源的大小,可以根据流量突高需要的额外资源量来估算进行设置。

最后点击创建,你可以查看这些进行资源占位的 Pod 是否启动成功:

$ kubectl get pod -n default
tke-autoscaling-placeholder-b58fd9d5d-2p6ww   1/1     Running   0          8s
tke-autoscaling-placeholder-b58fd9d5d-55jw7   1/1     Running   0          8s
tke-autoscaling-placeholder-b58fd9d5d-6rq9r   1/1     Running   0          8s
tke-autoscaling-placeholder-b58fd9d5d-7c95t   1/1     Running   0          8s
tke-autoscaling-placeholder-b58fd9d5d-bfg8r   1/1     Running   0          8s
tke-autoscaling-placeholder-b58fd9d5d-cfqt6   1/1     Running   0          8s
tke-autoscaling-placeholder-b58fd9d5d-gmfmr   1/1     Running   0          8s
tke-autoscaling-placeholder-b58fd9d5d-grwlh   1/1     Running   0          8s
tke-autoscaling-placeholder-b58fd9d5d-ph7vl   1/1     Running   0          8s
tke-autoscaling-placeholder-b58fd9d5d-xmrmv   1/1     Running   0          8s

tke-autoscaling-placeholder 的完整配置参考下面的表格:

参数描述默认值
replicaCountplaceholder 的副本数10
imageplaceholder 的镜像地址ccr.ccs.tencentyun.com/library/pause:latest
resources.requests.cpu单个 placeholder 副本占位的 cpu 资源大小300m
resources.requests.memory单个 placeholder 副本占位的内存大小600Mi
lowPriorityClass.create是否创建低优先级的 PriorityClass (用于被 placeholder 引用)true
lowPriorityClass.name低优先级的 PriorityClass 的名称low-priority
nodeSelector指定 placeholder 被调度到带有特定 label 的节点{}
tolerations指定 placeholder 要容忍的污点[]
affinity指定 placeholder 的亲和性配置{}

部署高优先级 Pod

tke-autoscaling-placeholder 的优先级很低,我们的业务 Pod 可以指定一个高优先的 PriorityClass,方便抢占资源实现快速扩容,如果没有可以先创建一个:

apiVersion: scheduling.k8s.io/v1
kind: PriorityClass
metadata:
  name: high-priority
value: 1000000
globalDefault: false
description: "high priority class"

在我们的业务 Pod 中指定 priorityClassName 为高优先的 PriorityClass:

apiVersion: apps/v1
kind: Deployment
metadata:
  name: nginx
spec:
  replicas: 8
  selector:
    matchLabels:
      app: nginx
  template:
    metadata:
      labels:
        app: nginx
    spec:
      priorityClassName: high-priority # 这里指定高优先的 PriorityClass
      containers:
      - name: nginx
        image: nginx
        resources:
          requests:
            cpu: 400m
            memory: 800Mi

当集群节点资源不够,扩容出来的高优先级业务 Pod 就可以将低优先级的 tke-autoscaling-placeholder 的 Pod 资源抢占过来并调度上,然后 tke-autoscaling-placeholder 的 Pod 再 Pending:

$ kubectl get pod -n default
NAME                         READY   STATUS    RESTARTS   AGE
nginx-bf79bbc8b-5kxcw         1/1     Running   0          23s

 插播福利!!!
一份3万字的云原生路线图手册待你打开
腾讯云原生后台回复关键字“手册”即可获取
《腾讯云原生路线图手册》和《腾讯云原生最佳实践》

    您可能也对以下帖子感兴趣

    文章有问题?点此查看未经处理的缓存