点击上方名片关注我们吧
1. 谷歌为什么要启动TPU项目?
2. GPU和TPU的设计思路对比
3. TPU的速度和价格
相比之下,GPU的生态则更为分散,它通常与多种不同的深度学习框架一起使用,如由Meta开发的PyTorch。这些框架和工具可能没有为特定类型的GPU进行同样程度的优化,导致性能可能不如专门为TPU设计的软件。
4. 谷歌为什么不开始销售TPU?
5. TPU方案的优势和缺点
到目前为止,我们已经讨论了谷歌TPU策略的许多优点,但是有没有缺点呢?当然,最大的问题是,谷歌变成了一个技术孤岛。
世界其他地区正在使用HuggingFace的模型和PyTorch进行创新,每个人都在快速地调整彼此的模型以开发更好的模型。然而,由于其基础设施主要围绕TensorFlow和JAX构建,谷歌无法轻松加入这个过程。当将外部模型投入生产时,它必须使用谷歌的框架重新实施一遍。
这个“技术孤岛”问题减慢了谷歌从外部世界获取良好解决方案的速度,并进一步将其与其他人隔离了。
6. AI硬件的未来是什么样的?
总结
文章有问题?点此查看未经处理的缓存