查看原文
其他

C++20新特性的小细节

程序喵大人 程序喵大人 2022-08-22

之前我整理过一篇C++20新特性的文章全网首发!!C++20新特性全在这一张图里了,里面提到过latch、barrier和semaphore,但是没有详细介绍过三者的作用和区别,这里详细介绍下。



latch


这个可能大多数人都有所了解,这就是我们经常会用到的CountDownLatch。用于使一个线程先阻塞,等待其他线程完成各自的工作后再继续执行。


CountDownLatch是通过计数器实现,计数器的初始值为线程的数量。每当一个线程完成了自己的任务后,计数器的值就会减1。当计数器值到达0时,它表示所有的线程已经完成了任务,然后等待的线程就可以打断阻塞去继续执行任务。


自己之前实现过一个CountDownLatch,源码大概这样:

CountDownLatch::CountDownLatch(int32_t count) : count_(count) {}
void CountDownLatch::CountDown() { std::unique_lock<std::mutex> lock(mutex_); --count_; if (count_ == 0) { cv_.notify_all(); }}
void CountDownLatch::Await(int32_t time_ms) { std::unique_lock<std::mutex> lock(mutex_); while (count_ > 0) { if (time_ms > 0) { cv_.wait_for(lock, std::chrono::milliseconds(time_ms)); } else { cv_.wait(lock); } }}
int32_t CountDownLatch::GetCount() const { std::unique_lock<std::mutex> lock(mutex_); return count_;}



barrier


许多线程在阻塞点阻塞,当到达阻塞点的线程达到一定数量时,会执行完成的回调,然后解除所有相关线程的阻塞,然后重置线程计数器,继续开始下一阶段的阻塞。


假设有很多线程并发执行,并在一个循环中执行一些计算。进一步假设一旦这些计算完成,需要在线程开始其循环的新迭代之前对结果进行一些处理。


看以下示例代码(摘自cppreference):

#include <barrier>#include <iostream>#include <string>#include <thread>#include <vector> int main() { const auto workers = { "anil", "busara", "carl" }; auto on_completion = []() noexcept { // locking not needed here static auto phase = "... done\n" "Cleaning up...\n"; std::cout << phase; phase = "... done\n"; }; std::barrier sync_point(std::ssize(workers), on_completion); auto work = [&](std::string name) { std::string product = " " + name + " worked\n"; std::cout << product; // ok, op<< call is atomic sync_point.arrive_and_wait(); product = " " + name + " cleaned\n"; std::cout << product; sync_point.arrive_and_wait(); }; std::cout << "Starting...\n"; std::vector<std::thread> threads; for (auto const& worker : workers) { threads.emplace_back(work, worker); } for (auto& thread : threads) { thread.join(); }}

可能的输出如下:

Starting... anil worked carl worked busara worked... doneCleaning up... busara cleaned carl cleaned anil cleaned... done



semaphore


信号量,这个估计大家都很熟悉,本质也是个计数器,主要有两个方法:

  • acquire():递减计数器,当计数器为零时阻塞,直到计数器再次递增。

  • release():递增计数器(可传递具体数字),并解除在acquire调用中的线程的阻塞。


示例代码如下:

#include <iostream>#include <thread>#include <chrono>#include <semaphore>
std::binary_semaphore smphSignalMainToThread(0), smphSignalThreadToMain(0); void ThreadProc() { smphSignalMainToThread.acquire(); std::cout << "[thread] Got the signal\n"; // response message using namespace std::literals; std::this_thread::sleep_for(3s); std::cout << "[thread] Send the signal\n"; // message smphSignalThreadToMain.release();} int main() { std::thread thrWorker(ThreadProc); std::cout << "[main] Send the signal\n"; // message smphSignalMainToThread.release(); smphSignalThreadToMain.acquire(); std::cout << "[main] Got the signal\n"; // response message thrWorker.join();}输出如下:[main] Send the signal[thread] Got the signal[thread] Send the signal[main] Got the signal


信号量也可以当作条件变量使用,这个我估计大家应该知道怎么做。


打完收工。

分享一个编程设计小技巧(没有两三年工作经验估计看不懂)


多线程学习指南


这里收集了100多篇C++原创文章(入门进阶必备)



点个 在看你最好看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存