Rust 中的 HashMap 实战指南:理解与优化技巧
Rust 中的 HashMap 实战指南:理解与优化技巧
在 Rust 编程中,HashMap 是一个强大的键值对数据结构,广泛应用于数据统计、信息存储等场景。在本文中,我们将通过三个实际的代码示例,详细讲解 HashMap 的基本用法以及如何在真实项目中充分利用它。此外,我们还将探讨 Rust 的所有权系统对 HashMap 的影响,并分享避免常见陷阱的技巧。
本文通过三个 Rust 实战例子,展示了 HashMap 的基本用法及其在实际场景中的应用。我们将从简单的水果篮子示例出发,逐步演示如何使用 HashMap 存储和处理不同数据,并通过添加测试用例来确保代码的正确性。此外,我们还会深入探讨 Rust 所有权系统对 HashMap 使用的影响,尤其是如何避免所有权转移的问题。
实操
示例一:使用 HashMap 存储水果篮子
// hashmaps1.rs
//
// A basket of fruits in the form of a hash map needs to be defined. The key
// represents the name of the fruit and the value represents how many of that
// particular fruit is in the basket. You have to put at least three different
// types of fruits (e.g apple, banana, mango) in the basket and the total count
// of all the fruits should be at least five.
//
// Make me compile and pass the tests!
//
// Execute `rustlings hint hashmaps1` or use the `hint` watch subcommand for a
// hint.
use std::collections::HashMap;
fn fruit_basket() -> HashMap<String, u32> {
let mut basket = HashMap::new(); // TODO: declare your hash map here.
// Two bananas are already given for you :)
basket.insert(String::from("banana"), 2);
// TODO: Put more fruits in your basket here.
basket.insert(String::from("apple"), 3);
basket.insert(String::from("mango"), 4);
basket.insert(String::from("orange"), 5);
basket
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn at_least_three_types_of_fruits() {
let basket = fruit_basket();
assert!(basket.len() >= 3);
}
#[test]
fn at_least_five_fruits() {
let basket = fruit_basket();
assert!(basket.values().sum::<u32>() >= 5);
}
}
在 本例中,我们构建了一个水果篮子,并通过 HashMap 来存储水果种类及其数量。
通过测试,我们验证了篮子中至少有三种水果,并且总数超过五个。
示例二:不重复添加水果
// hashmaps2.rs
//
// We're collecting different fruits to bake a delicious fruit cake. For this,
// we have a basket, which we'll represent in the form of a hash map. The key
// represents the name of each fruit we collect and the value represents how
// many of that particular fruit we have collected. Three types of fruits -
// Apple (4), Mango (2) and Lychee (5) are already in the basket hash map. You
// must add fruit to the basket so that there is at least one of each kind and
// more than 11 in total - we have a lot of mouths to feed. You are not allowed
// to insert any more of these fruits!
//
// Make me pass the tests!
//
// Execute `rustlings hint hashmaps2` or use the `hint` watch subcommand for a
// hint.
use std::collections::HashMap;
#[derive(Hash, PartialEq, Eq)]
enum Fruit {
Apple,
Banana,
Mango,
Lychee,
Pineapple,
}
fn fruit_basket(basket: &mut HashMap<Fruit, u32>) {
let fruit_kinds = vec![
Fruit::Apple,
Fruit::Banana,
Fruit::Mango,
Fruit::Lychee,
Fruit::Pineapple,
];
for fruit in fruit_kinds {
// TODO: Insert new fruits if they are not already present in the
// basket. Note that you are not allowed to put any type of fruit that's
// already present!
*basket.entry(fruit).or_insert(1);
// 如果水果不在篮子中,则插入数量为1的该水果
// if !basket.contains_key(&fruit) {
// basket.insert(fruit, 1);
// }
}
}
#[cfg(test)]
mod tests {
use super::*;
// Don't modify this function!
fn get_fruit_basket() -> HashMap<Fruit, u32> {
let mut basket = HashMap::<Fruit, u32>::new();
basket.insert(Fruit::Apple, 4);
basket.insert(Fruit::Mango, 2);
basket.insert(Fruit::Lychee, 5);
basket
}
#[test]
fn test_given_fruits_are_not_modified() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
assert_eq!(*basket.get(&Fruit::Apple).unwrap(), 4);
assert_eq!(*basket.get(&Fruit::Mango).unwrap(), 2);
assert_eq!(*basket.get(&Fruit::Lychee).unwrap(), 5);
}
#[test]
fn at_least_five_types_of_fruits() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
let count_fruit_kinds = basket.len();
assert!(count_fruit_kinds >= 5);
}
#[test]
fn greater_than_eleven_fruits() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
let count = basket.values().sum::<u32>();
assert!(count > 11);
}
#[test]
fn all_fruit_types_in_basket() {
let mut basket = get_fruit_basket();
fruit_basket(&mut basket);
for amount in basket.values() {
assert_ne!(amount, &0);
}
}
}
在上面的示例代码中,我们通过 HashMap 存储多个水果,但避免重复添加已有的水果种类。
测试用例验证了我们不会修改已存在的水果,并确保总数超过 11 个。
示例三:记录比赛比分
// hashmaps3.rs
//
// A list of scores (one per line) of a soccer match is given. Each line is of
// the form : "<team_1_name>,<team_2_name>,<team_1_goals>,<team_2_goals>"
// Example: England,France,4,2 (England scored 4 goals, France 2).
//
// You have to build a scores table containing the name of the team, goals the
// team scored, and goals the team conceded. One approach to build the scores
// table is to use a Hashmap. The solution is partially written to use a
// Hashmap, complete it to pass the test.
//
// Make me pass the tests!
//
// Execute `rustlings hint hashmaps3` or use the `hint` watch subcommand for a
// hint.
use std::collections::HashMap;
// A structure to store the goal details of a team.
struct Team {
goals_scored: u8,
goals_conceded: u8,
}
fn build_scores_table(results: String) -> HashMap<String, Team> {
// The name of the team is the key and its associated struct is the value.
let mut scores: HashMap<String, Team> = HashMap::new();
for r in results.lines() {
let v: Vec<&str> = r.split(',').collect();
let team_1_name = v[0].to_string();
let team_1_score: u8 = v[2].parse().unwrap();
let team_2_name = v[1].to_string();
let team_2_score: u8 = v[3].parse().unwrap();
// TODO: Populate the scores table with details extracted from the
// current line. Keep in mind that goals scored by team_1
// will be the number of goals conceded from team_2, and similarly
// goals scored by team_2 will be the number of goals conceded by
// team_1.
// 更新 team_1 的数据
let team_1 = scores.entry(team_1_name.clone()).or_insert(Team {
goals_scored: 0,
goals_conceded: 0,
});
team_1.goals_scored += team_1_score;
team_1.goals_conceded += team_2_score;
// 更新 team_2 的数据
let team_2 = scores.entry(team_2_name.clone()).or_insert(Team {
goals_scored: 0,
goals_conceded: 0,
});
team_2.goals_scored += team_2_score;
team_2.goals_conceded += team_1_score;
}
scores
}
#[cfg(test)]
mod tests {
use super::*;
fn get_results() -> String {
let results = "".to_string()
+ "England,France,4,2\n"
+ "France,Italy,3,1\n"
+ "Poland,Spain,2,0\n"
+ "Germany,England,2,1\n";
results
}
#[test]
fn build_scores() {
let scores = build_scores_table(get_results());
let mut keys: Vec<&String> = scores.keys().collect();
keys.sort();
assert_eq!(
keys,
vec!["England", "France", "Germany", "Italy", "Poland", "Spain"]
);
}
#[test]
fn validate_team_score_1() {
let scores = build_scores_table(get_results());
let team = scores.get("England").unwrap();
assert_eq!(team.goals_scored, 5);
assert_eq!(team.goals_conceded, 4);
}
#[test]
fn validate_team_score_2() {
let scores = build_scores_table(get_results());
let team = scores.get("Spain").unwrap();
assert_eq!(team.goals_scored, 0);
assert_eq!(team.goals_conceded, 2);
}
}
本示例展示了 HashMap 在复杂场景中的应用,如记录足球比赛的比分。我们通过 HashMap 将每支球队的得分和失分进行统计。并通过测试来验证比分记录是否正确。
思考
1. 为什么要用 team_1_name.clone()
?
在 Rust 中,String
是一个拥有所有权的类型,意味着它的值在默认情况下会被移动,而不是复制。如果你直接使用 team_1_name
作为 HashMap
的键,那么当你调用 entry(team_1_name)
时,team_1_name
的所有权会被移动到 entry()
函数中。
之后,如果你还想使用 team_1_name
,就无法访问它了,因为所有权已经被移动了。这时你需要通过 clone()
创建一个新的副本(浅拷贝),这样你可以保留原始的 String
。
使用 .clone()
的目的是避免所有权转移而导致变量不可用。
示例:
let team_1_name = "England".to_string();
// 所有权被移动给 entry(),你不能再访问 team_1_name
scores.entry(team_1_name);
// 如果你还想用 team_1_name,就要使用 clone():
scores.entry(team_1_name.clone());
如果 team_1_name
是一个 &str
(即字符串切片,通常是不可变引用),那么你就不需要 clone()
,因为引用类型不涉及所有权的移动问题。
2. 为什么不用结构体直接初始化,而是用累加的方式?
在每场比赛的过程中,某个队伍可能会多次出现,例如:
比赛1:England 对 France 比赛2:Germany 对 England
我们需要在 HashMap
中更新每个队伍的进球和失球信息,而不是每次都覆盖已有数据。因此,我们不能每次都用新的结构体初始化,而是要先检查该队伍是否已经在 HashMap
中存在,然后累加其数据。
这里用的是 entry()
方法,它的作用是:
如果 team_1_name
还没有在HashMap
中出现,就插入一个新的Team
结构体,并初始化进球和失球为 0。如果 team_1_name
已经在HashMap
中了,那么直接获取它对应的Team
结构体,并更新其goals_scored
和goals_conceded
字段。
通过这种方式,每次遇到相同队伍时,不会重新初始化,而是将新的进球和失球数累加到已有数据中。
let team_1 = scores.entry(team_1_name.clone()).or_insert(Team {
goals_scored: 0,
goals_conceded: 0,
});
// 累加进球和失球
team_1.goals_scored += team_1_score;
team_1.goals_conceded += team_2_score;
这样就能保证每个队伍的分数在不同比赛中是累积的,而不是被覆盖掉。
思考总结
team_1_name.clone()
是为了避免移动所有权导致变量不可用。累加进球数和失球数 是因为一个队伍可能会出现在多场比赛中,不能每次都重新初始化数据,而是要在已有的基础上进行更新。
这两者结合起来,能确保正确跟踪每个队伍的进球和失球情况。
总结
通过这三个 HashMap 的实战示例,我们不仅掌握了如何高效地使用 HashMap 存储和操作数据,还深入理解了 Rust 的所有权与借用规则在实际开发中的应用。Rust 强调所有权的管理,尤其是在处理复杂数据结构如 HashMap 时,准确掌控所有权的转移和数据的引用关系至关重要,这不仅能够提高代码的效率,还能保障程序的安全性和稳定性。
这些实践展示了 HashMap 在解决实际问题中的强大能力,尤其在需要频繁查找、插入和更新数据的场景中。熟练掌握 HashMap 的使用技巧,将极大提升我们在 Rust 开发中的数据管理效率与程序性能。
参考
https://www.rust-lang.org/zh-CN https://crates.io/ https://course.rs/about-book.html https://course.rs/basic/crate-module/module.html https://users.rust-lang.org/ https://lab.cs.tsinghua.edu.cn/rust/slides/05-org-lib.pdf https://github.com/rust-lang https://rustmagazine.github.io/rust_magazine_2022/Q1/lang.html https://github.com/QMHTMY/RustBook