从硬件、软件和算法以及各国政策等方面展现量子技术最新进展。作者丨杏花编辑丨青暮超导量子计算过去宣称实现的量子霸权在最新的获得戈登贝尔奖被宣告打破,但谷歌和IBM依然在这一领域有着雄心勃勃的计划。离子阱则凭借高保真的量子比特,在稳步前行,探索多样化的技术路线;中性原子与之类似,但具有更好的可扩展性,这也是离子阱一直无法与超导量子比特相比的地方。硅量子点作为硅基技术的自然进阶,2021年也实现了目前为止最低的量子噪声。2021年表现最为亮眼的当属光量子比特,“九章二号”实现了比全球最快超算快10^24倍的计算速度,达成“量子计算优越性”里程碑。下一步,中科大团队已经开始朝量子纠错进发,而量子纠错正是量子计算机迈向实用的一大障碍。以上技术路线都要求接近绝对零度的环境,而金刚石NV色心可以在环境温度下工作,在快速落地上也被寄予厚望,比如生物医疗等领域就出现了颇为可喜的进展。2021年至今,全球量子计算的当下现状如何,形成了什么局面,未来会如何发展?且看本文从硬件、软件和算法以及各国政策等方面展现的量子技术最新进展。1量子计算简介量子计算是一种遵循量子力学规律调控量子信息单元进行计算的新型计算模式。在理解量子计算的概念时,通常将它和经典计算相比较。经典计算使用二进制进行运算,每个计算单元(比特)总是处于0或1的确定状态。量子计算的计算单元称为量子比特,它有两个完全正交的状态0和1。同时,由于量子体系的状态有叠加特性,能够实现计算基矢状态的叠加,因此不仅其状态可以有0和1,还有0和1同时存在的叠加态,以及经典体系根本没有的量子纠缠态,即在数学上的多量子比特体系波函数不能进行因式分解的一种状态。一台拥有4个比特的经典计算机,在某一时间仅能表示16个状态中的1个,而有4个量子比特的量子计算机可以同时表示这16种状态的线性叠加态,即同时表示这16个状态。随着量子比特数目的递增,一个有n个量子比特的量子计算机可以同时处于2^n种可能状态的叠加,也就是说,可以同时表示这2的n次方数目的状态。在此意义上,对量子计算机体系的操作具有并行性,即对量子计算机的一个操作,实现的是对2的n次方数目种可能状态的同时操作,而在经典计算机中需要2的n次方数目的操作才能完成。因此,在原理上,量子计算机可以具有比经典计算机更快的处理。量子计算机经典计算机体积缩小和性能提升来源于计算机芯片集成度的提高。随着计算机元器件从电子管到晶体管再到大规模集成电路的快速发展,如今的计算机可以薄如一张纸,运算速度也能很好地满足需求。然而,大数据和互联网时代的来临以及人工智能的发展,使得经典计算机的能力越来越不能满足海量数据处理的需求,目前主要有两个方面制约经典计算机发展:能耗问题和芯片高集成化的极限。1961年,IBM